Автор работы: Пользователь скрыл имя, 21 Февраля 2013 в 17:48, контрольная работа
Задание 1
По данным таблицы 1.1, путем прибавления к исходным данным трехзначной цифры 309, соответствующей трем последним цифрам зачетной книжки, рассчитать уровни каждого ряда.
Задание 2
Методом укрупнения интервалов исходные данные привести к квартальным уровням и составить таблицу 2.1. Проанализировать тенденцию.
Вычислить также средние показатели динамики. Сделать выводы.
Решение
Формулы для определения абсолютных приростов:
Формулы для определения темпов роста:
Формулы для определения темпов прироста:
Абсолютное содержание 1% прироста будем определять по формуле:
Расчеты представлены в таблице 6.1
Таблица 6.1
Месяц |
Численность рабочих (на конец месяца), чел. |
Абсолютные темпы роста, тыс. т.. |
Темпы роста, % |
Темпы прироста, % |
Абсолют-ное содержа-ние 1% прироста, тыс. т. | |||
базисные |
цепные |
базисные |
цепные |
базисные |
цепные | |||
Январь |
11269 |
- |
- |
- |
- |
- |
- |
- |
Февраль |
11409 |
140 |
140 |
101,24 |
101,24 |
1,24 |
1,24 |
112,69 |
Март |
11409 |
140 |
0 |
101,24 |
100,00 |
1,24 |
0,00 |
0 |
Апрель |
11909 |
640 |
500 |
105,68 |
104,38 |
5,68 |
4,38 |
114,09 |
Май |
11959 |
690 |
50 |
106,12 |
100,42 |
6,12 |
0,42 |
119,09 |
Июнь |
11909 |
640 |
-50 |
105,68 |
99,58 |
5,68 |
-0,42 |
119,59 |
Июль |
12129 |
860 |
220 |
107,63 |
101,85 |
7,63 |
1,85 |
119,09 |
Август |
12309 |
1040 |
180 |
109,23 |
101,48 |
9,23 |
1,48 |
121,29 |
Сентябрь |
12209 |
940 |
-100 |
108,34 |
99,19 |
8,34 |
-0,81 |
123,09 |
Октябрь |
12809 |
1540 |
600 |
113,67 |
104,91 |
13,67 |
4,91 |
122,09 |
Ноябрь |
12829 |
1560 |
20 |
113,84 |
100,16 |
13,84 |
0,16 |
128,09 |
Декабрь |
13059 |
1790 |
230 |
115,88 |
101,79 |
15,88 |
1,79 |
128,29 |
Средний абсолютный прирост будем определять по формуле:
Средний абсолютный прирост равен:
Средний темп роста будем определять по формуле:
Темпы роста берутся в коэффициентах.
Средний темп роста будет равен:
Средний темп прироста будем определять по формуле:
Средний темп прироста равен:
1,080 – 1 = 0,08
Расчеты показывают, что численность
рабочих по сравнению с январем
месяцем постоянно
В среднем каждый месяц абсолютный прирост численности работающих составил 162 чел. или 108%.
Задание 7
Изучить методы сглаживания рядов динамики скользящей средней и аналитического выравнивания. По показателю фонда заработной платы (данные таблицы 1.1) выполнить подробные вспомогательные и основные расчеты. Теоретически обосновать расчеты и полученные результаты.
Решение
Метод сглаживания по скользящей трехчленной средней заключается в том, что для каждого уровня определяют трехзвенную скользящую среднюю по формуле:
Воспользовавшись данной формулой, рассчитаем показатели сглаженного ряда динамики (табл.7.2)
При сглаживании методом наименьших квадратов используется представление уровней ряда в виде функции от времени.
Если представить, что зависимость
между показателем времени и
численности населения в
Методом наименьших квадратов получим следующие оценки параметров:
В рядах динамики техника расчета параметров может быть упрощена. Для этого показателю времени придают такие значения, чтобы их сумма была равна нулю. В этом случае параметры определяются следующим образом:
Произведем расчеты
Все расчеты представлены в таблице 7.1.
Таблица 7.1.
Аналитическое сглаживание ряда динамики по методу наименьших квадратов.
t(месяцы) |
х (фонд заработной платы), тыс.руб. |
t2 |
xt |
-6 |
225309 |
36 |
-1351854 |
-5 |
237509 |
25 |
-1187545 |
-4 |
237309 |
16 |
-949236 |
-3 |
238309 |
9 |
-714927 |
-2 |
240509 |
4 |
-481018 |
-1 |
240309 |
1 |
-240309 |
1 |
241709 |
1 |
241709 |
2 |
243809 |
4 |
487618 |
3 |
242309 |
9 |
726927 |
4 |
244609 |
16 |
978436 |
5 |
246009 |
25 |
1230045 |
6 |
246609 |
36 |
1479654 |
Сумма |
2884308 |
182 |
219500 |
Для расчета сглаженной численности нами были определены коэффициенты аналитического уравнения:
Расчеты линии сглаживания производился по уравнению:
Таблица 11.
Сглаживание ряда динамики
Месяц |
Фонд заработной платы, тыс.руб. |
трехзвенной скользящей средней |
аналитическое выравнивание |
Январь |
225309 |
233122,74 | |
Февраль |
237509 |
233375,67 |
234328,78 |
Март |
237309 |
237709,00 |
235534,82 |
Апрель |
238309 |
238709,00 |
236740,87 |
Май |
240509 |
239709,00 |
237946,91 |
Июнь |
240309 |
240842,33 |
239152,96 |
Июль |
241709 |
241942,33 |
241565,04 |
Август |
243809 |
242609,00 |
242771,09 |
Сентябрь |
242309 |
243575,67 |
243977,13 |
Октябрь |
244609 |
244309,00 |
245183,18 |
Ноябрь |
246009 |
245742,33 |
246389,22 |
Декабрь |
246609 |
247595,26 |
Сглаживание ряда динамики позволяет установить тенденцию развития явления. Произведенное нами сглаживание фонда заработной платы позволяет сделать вывод о том, что выравнивание ряда динамики подтверждает сделанные ранее выводы о росте фонда заработной платы на протяжении исследуемого периода.
Задание 8
Индексным методом определить влияние на изменение фонда заработной платы в декабре по сравнению с январем средней заработной платы на одного рабочего и их численности.
Решение
Индекс переменного состава будем находить по формуле:
Тогда
Индекс постоянного состава – это индекс, исчисленный с весами, зафиксированными на уровне одного периода и показывающий изменение только индексируемой величины.
Индекс цен постоянного
Отсюда
Индекс структурных сдвигов – это индекс, характеризующий влияние изменения структуры изучаемого явления на динамику среднего уровня этого явления.
Индекс структурных сдвигов будем определять по формуле:
Тогда
В связи с тем что индексы переменного и постоянного состава равны, то можно сказать что на фонд заработной платы оказало одинаковое влияние изменение численности рабочих и средней заработной платы.
Задание 9
С помощью корреляционно-
а) построить эмпирическую линию регрессии:
б) оценить тесноту связи между признаками;
в) найти уравнение связи, график которого представить в той же системе координат, что и эмпирическая линия регрессии.
г) сделать выводы
Решение
Построим эмпирическую линию регрессии отношения выпуска продукции (у) к числу работающих (х).
Рисунок 9.1. Эмпирическая линия регрессии
Для оценки тесноты связи между признаками используется коэффициент корреляции. Коэффициент корреляции будем определять по формуле:
Для определения коэффициента корреляции проведем дополнительные расчеты.
Таблица 9.2
Расчетная таблица для определения коэффициента корреляции
Месяц |
Численность рабочих (на конец месяца), чел. (х) |
Выпуск продукции, тыс.руб. (у) |
X² |
X Y |
Y² |
Январь |
11269 |
678309 |
126990361 |
7643864121 |
460103099481 |
Февраль |
11409 |
679209 |
130165281 |
7749095481 |
461324865681 |
Март |
11409 |
679309 |
130165281 |
7750236381 |
461460717481 |
Апрель |
11909 |
679509 |
141824281 |
8092272681 |
461732481081 |
Май |
11959 |
679909 |
143017681 |
8131031731 |
462276248281 |
Июнь |
11909 |
679409 |
141824281 |
8091081781 |
461596589281 |
Июль |
12129 |
685609 |
147112641 |
8315751561 |
470059700881 |
Август |
12309 |
686209 |
151511481 |
8446546581 |
470882791681 |
Сентябрь |
12209 |
685509 |
149059681 |
8369379381 |
469922589081 |
Октябрь |
12809 |
686409 |
164070481 |
8792212881 |
471157315281 |
Ноябрь |
12829 |
684609 |
164583241 |
8782848861 |
468689482881 |
Декабрь |
13059 |
699509 |
170537481 |
9134888031 |
489312841081 |
Сумма |
145208 |
8203508 |
1760862172 |
99299209472 |
5608518722172 |
Среднее |
12100,67 |
683625,67 |
146738514,33 |
8274934122,67 |
467376560181 |
Так как значение коэффициента корреляции положительно и составляет 0,82 то можно утверждать, что связь между численностью рабочих и выпуском продукции прямая и сильная. То есть с увеличением численности рабочих происходит увеличение выпуска продукции.
Определение коэффициентов уравнения проведем при помощи методов наименьших квадратов.
Система нормальных уравнений для линейной зависимости имеет вид:
Проведем предварительные расчеты в таблице.
Таблица 9.1
Расчет сумм для определения параметров парного линейного уравнения регрессии
Месяц |
Численность рабочих (на конец месяца), чел. (х) |
Выпуск продукции, тыс.руб. (у) |
X² |
X Y |
Январь |
11269 |
678309 |
126990361 |
7643864121 |
Февраль |
11409 |
679209 |
130165281 |
7749095481 |
Март |
11409 |
679309 |
130165281 |
7750236381 |
Апрель |
11909 |
679509 |
141824281 |
8092272681 |
Май |
11959 |
679909 |
143017681 |
8131031731 |
Июнь |
11909 |
679409 |
141824281 |
8091081781 |
Июль |
12129 |
685609 |
147112641 |
8315751561 |
Август |
12309 |
686209 |
151511481 |
8446546581 |
Сентябрь |
12209 |
685509 |
149059681 |
8369379381 |
Октябрь |
12809 |
686409 |
164070481 |
8792212881 |
Ноябрь |
12829 |
684609 |
164583241 |
8782848861 |
Декабрь |
13059 |
699509 |
170537481 |
9134888031 |
Сумма |
145208 |
8203508 |
1760862172 |
99299209472 |