Автор работы: Пользователь скрыл имя, 13 Июня 2013 в 23:34, лекция
Исходным понятием статистики является понятие статистической совокупности, под которой понимают массовое явление, изучаемое в данный момент статистикой (например: население страны). Каждая статистическая совокупность состоит из отдельных элементов, которые называют единицами статистической совокупности (для населения – человек, семья, население какого-нибудь региона, национальность и т. д.). Каждая единица совокупности обладает определенными свойствами. Признаком в статистике называют свойство или качество единицы совокупности, которое может быть определено или измерено (для человека – пол, рост, возраст, вес и т. д.). Признаки подразделяются на количественные и качественные (атрибутивные).
www.tourlib.net
Министерство образования Российской Федерации
ГОУ ВПО «Российская экономическая академия имени Г.В.Плеханова»
С.Г. Бабич
ОБЩАЯ ТЕОРИЯ СТАТИСТИКИ. 1 КУРС. 2 СЕМЕСТР
(КУРС ЛЕКЦИЙ)
Москва 2004
Лекция №1
Статистика – это общественная наука, изучающая массовые явления и процессы, происходящие в обществе, а также экономические и социальные условия жизни общества. Все явления и процессы, изучаемые статистикой в конкретных условиях места и времени, в непрерывном развитии и взаимосвязи друг с другом.
Объектами статистических исследований являются массовые экономические и социальные явления и процессы, происходящие в обществе. Предметом статистики являются размеры и уровни изучаемых явлений и процессов. Статистика создает и анализирует количественные и качественные характеристики изучаемых явлений и процессов в их непрерывном развитии и взаимосвязи друг с другом. Глобальной задачей статистики является подготовка и представление полной и достоверной информации о состоянии и развитии экономики страны. Более конкретными задачами являются:
Главным статистическим органом нашей станы является ГОСКОМСТАТ РФ. Он осуществляет управление статистическим отчетом и отчетностью во всех отраслях экономики и несет полную ответственность за создание и функционирование статистической информационной системы на общегосударственном, отраслевом и региональном уровнях.
Курс статистики состоит из следующих разделов:
1. Общая теория статистики
2. Математическая статистика
3. Социально-экономическая
4. Отраслевая статистика (финансовая, международная и т. д.)
Исходным понятием статистики является понятие статистической совокупности, под которой понимают массовое явление, изучаемое в данный момент статистикой (например: население страны). Каждая статистическая совокупность состоит из отдельных элементов, которые называют единицами статистической совокупности (для населения – человек, семья, население какого-нибудь региона, национальность и т. д.). Каждая единица совокупности обладает определенными свойствами. Признаком в статистике называют свойство или качество единицы совокупности, которое может быть определено или измерено (для человека – пол, рост, возраст, вес и т. д.). Признаки подразделяются на количественные и качественные (атрибутивные). Каждая единица совокупности имеет определенное значение признака. Изменение величины признака от одной единицы совокупности к другой в статистике называют вариацией признака. По характеру, вариации признака подразделяются на множественные (принимающие различные значения) и альтернативные (принимающие только 2 значения).
В любом статистическом исследовании выделяют 3 этапа:
1. статистическое наблюдение
2. сводка и группировка
3. расчет обобщающих показателей и анализ полученных данных.
Статистическое наблюдение представляет собой систематизированный и научно обоснованный сбор первичных статистических данных об изучаемом явлении путем регистрации индивидуальных значений признака у отдельных единиц совокупности. Основной задачей статистического наблюдения является получение в возможно короткие сроки полной и достоверной информации об изучаемом явлении. На практике применяют 2 организационные формы статистического наблюдения:
Различают следующие виды статистического наблюдения:
Для правильной организации статистического наблюдения утверждают программу, в которой устанавливают цели и задачи наблюдения, определяют объект и единицу наблюдения, выбирают вид и способ наблюдения, место и время его проведения, устанавливают круг лиц ответственных за проведение наблюдения и сроки предоставления необходимой информации.
Сводка – это второй этап статистического исследования и заключается в том, что первичные данные, полученные при проведении статистического наблюдения, систематизируются и обобщаются. По технике выполнения сводка бывает ручной и механизированной. На стадии сводки применяется группировка – это метод, при котором вся исходная совокупность делится на группы по какому-то существенному признаку. Признак, лежащий в основании группировки, называют группировочным.
Различают простую и сложную сводку. При простой сводке производится только подсчет итогов по всей совокупности в целом. При сложной - разделение исходной совокупности на группы, подсчет итогов в каждой группе и совокупности в целом, представление полученных данных в виде статистических таблиц.
Если производится группировка единиц исходной совокупности только по первому признаку, то она называется простой, если по второму и более признакам – комбинационной. В зависимости от решаемой задачи различают следующие виды группировок:
Важнейшим вопросом группировки является определение количества выделяемых групп. Если в основании группировки лежит качественный (атрибутивный) признак, то количество выделяемых групп определяется самим этим признаком. Если в основании группировки лежит количественный признак, то производят специальные расчеты для определения количества выделяемых групп и величин интервалов группировки.
Лекция №2.
Интервалом группировки называют значения варьирующего признака, лежащие в определенных границах (например: размер заработной платы от 5 до 12 тыс. руб.). Минимальное значение интервала называют его нижней гранью, максимальное – верхней гранью. Величина интервала обозначается i и определяется, как разность между верхней и нижней границами в каждом интервале. Интервалы группировки бывают открытые и закрытые, равные и неравные. Закрытым считается интервал, который имеет и нижнюю и верхнюю границы. Если одна из границ отсутствует, то интервал считается открытым. При решении задач открытый интервал группировки закрывают по величине смежного с ним интервала. Если в каждой из выделенных групп величина интервала одинаковая, то такие интервалы считаются равными, в противном случае они считаются неравными. Количество выделяемых групп с неравными интервалами зависит от имеющейся исходной информации и целей исследования. Если вариация признака проявляется в сравнительно узких границах, то производят группировку единиц совокупности с равными интервалами. Количество выделяемых групп с равными интервалами определяется по формуле Стерджесса: n = 1+3,322 * lgN . В этой формуле N – численность единиц исходной совокупности, n – количество выделяемых групп с равными интервалами. При N от 15 до 24: n=5; при N от 25 до 44: n=6; при N от 45 до 89: n=7. Величина равного интервала определяется по формуле: i = (Xmax – Xmin)/n, где Xmax и Xmin соответствуют максимальному и минимальному значениям признака в исходной совокупности, а n - количество выделяемых групп с равными интервалами.
После определения группировочного признака, количество выделяемых групп и величин интервалов группировки, данные представляют в виде рядов распределения. Статистический ряд распределения – это упорядоченное распределение единиц исходной совокупности на группы по какому-то существенному признаку. В зависимости от группировочного признака различают атрибутивные и вариационные ряды распределения. Атрибутивным называется ряд распределения, построенный по количественному признаку. Вариационным называют ряд распределения, построенный в порядке возрастания или убывания количественных значений признака. Схематично, вариационные ряды распределения представлены в виде двух столбцов. В первом столбце приводятся индивидуальные значения признака, их называют вариантами и обозначают через Х. Во втором столбце содержатся: 1) Абсолютные числа, показывающие, сколько раз в исходной совокупности встречается данное значение признака (данный вариант). Такие абсолютные числа называют частотами и обозначают буквой ƒ. Сумма всех частот должна быть равна общей численности единиц исходной совокупности. 2) Относительные числа, показывающие долю (удельный вес) каждой группы в общей численности единиц исходной совокупности. Такие относительные числа называют частостями и обозначают через W. Сумма всех частостей должна быть равна 1 или 100%. Схема вариационного ряда распределения:
X . . . |
ƒ(W) . . . |
Итого |
. |
В зависимости от характера вариации признака различают дискретные и интервальные вариационные ряды распределения. Если значения признака (варианты) представлены в виде целых чисел, то такой вариационный ряд называют дискретным (например: приводится распределение 20 семей по числу детей в них ).
Число детей |
Количество семей |
Х |
ƒ |
0 |
3 |
1 |
8 |
2 |
4 |
3 |
3 |
4 |
2 |
Итого |
20 |
Дискретные вариационные ряды изображают в виде полигона распределения. Для его построения по оси абсцисс откладываются индивидуальные значения признака (варианты), по оси ординат частоты (частости).
Если значения признака (варианты) представлены в виде интервалов, то такой вариационный ряд называется интервальным (например: приводится распределение 30 сотрудников фирмы по размеру месячной заработной платы (тыс. руб.)). Интервальные вариационные ряды изображаются графически в виде гистограммы.
Зарплата |
Численность сотрудников |
S |
(тыс. руб. мес.), X |
(кол-во человек), ƒ | |
До 10 (от 5) |
3 |
3 |
10-15 |
12 |
15 |
15-18 |
10 |
25 |
18-25 |
5 |
30 |
Итого |
30 |
Для ее построения по оси абсцисс откладываются отрезки, длина которых соответствует интервалам группировки. Эти отрезки являются нижним основанием образуемых прямоугольников, а соответствующие частота или частость – соответственно высотой этих прямоугольников. В некоторых случаях интервальный вариационный ряд изображается графически в виде кумуляты. Для ее построения, необходимо накопленные частоты (частости). Они обозначаются S и определяются путем последовательного суммирования частот (частостей), предшествующих интервалу. Вычислим для нашего примера интервального вариационного ряда накопленные частоты (см. ранее в таблице). Накопленная частота показывает сколько единиц исходной совокупности имеют значение признака (вариант) не больше, чем рассматриваемая (например: накопленная частота равна 25, значит, 25 сотрудников из 30 имеют размер зарплаты не более 18 тыс. руб. в месяц). При построении кумуляты вся накопленная частота (частость) интервала, присваивается верхней границе данного интервала. Для построения кумуляты по оси абсцисс откладываются верхние границы интервалов, по оси ординат – накопленные частоты (частости).
На практике иногда приходится пользоваться уже имеющимися группировками, которые могут быть несопоставимы по следующим причинам: 1) Неодинаковые границы интервалов группировки. 2) различное количество выделяемых групп. Для привидения таких группировок к сопоставимому виду, применяют метод вторичной группировки. Различают 2 способа вторичной группировки: 1) Способ укрупнения интервалов группировки. 2) Способ долевой перегруппировки, который заключается в том, что за каждой группой закрепляется определенная доля единиц исходной совокупности.