Лекция по "Статистике"

Автор работы: Пользователь скрыл имя, 13 Июня 2013 в 23:34, лекция

Описание работы

Исходным понятием статистики является понятие статистической совокупности, под которой понимают массовое явление, изучаемое в данный момент статистикой (например: население страны). Каждая статистическая совокупность состоит из отдельных элементов, которые называют единицами статистической совокупности (для населения – человек, семья, население какого-нибудь региона, национальность и т. д.). Каждая единица совокупности обладает определенными свойствами. Признаком в статистике называют свойство или качество единицы совокупности, которое может быть определено или измерено (для человека – пол, рост, возраст, вес и т. д.). Признаки подразделяются на количественные и качественные (атрибутивные).

Файлы: 1 файл

Lektsii.doc

— 854.50 Кб (Скачать файл)

От группировок следует отличать классификации. Особенностями классификаций является то, что в их основу кладется качественный признак. Они устанавливаются органами государственной и международной статистики и остаются неизменными в течение длительного периода времени.

Лекция №3.

Абсолютные и относительные  величины.

В результате проведения статистического  наблюдения мы получаем первичные данные, которые характеризуют объект нашего исследования. Такие первичные данные называют абсолютными величинами. Абсолютная величина – это количественный показатель, выражающий общую численность, размеры. Уровни и другие характеристики изучаемого объекта. Абсолютные величины могут быть выражены в натуральных, стоймостных и трудовых единицах измерения. В зависимости от того, какую часть исходной совокупности они характеризуют, абсолютные величины подразделяют на индивидуальные, групповые и свободные (совокупные). Результат отношения двух абсолютных величин статистики называют относительной величиной. Различают 7 видов относительных величин:

1. Относительная величина плана (прогноза). Определяется, как отношение планового показателя текущего (отчетного периода) к фактическому показателю предшествующего (базисного) периода и показывает во сколько раз планом предусмотрено изменение изучаемых показателей в текущем периоде по сравнению с предшествующим.

2. Относительная величина выполнения плана. Определяется, как отношение фактического показателя текущего (отчетного) периода к плановому показателю этого же периода и показывает, во сколько раз изучаемый показатель текущего периода изменился по сравнению с планом.

3. Относительная величина динамики. Характеризует изменение изучаемого показателя во времени и определяется как отношение фактического показателя текущего периода к фактическому показателю предшествующего периода.

Между этими тремя перечисленными относительными величинами существует определенная взаимосвязь. Относительная  величина динамики должна быть равна произведению относительной величины плана и относительной величины выполнения плана. (ОВд. = ОВпл.* ОВвпл.) Пример: в 2002 году фирмой было выпущено 200 тыс. штук телевизоров, а на 2003 год запланирован выпуск 260 тыс. штук телевизоров. Фактически в 2003 году было выпущено 275 тыс. штук телевизоров.

ОВпл. = 260/200=1,3 (130%)

ОВвпл. = 275/260=1,06 (106%)

ОВд. = 275/200=1,375 (137,5%)

  1. Относительная величина структуры. Определяется, как отношение части совокупности ко всей совокупности в целом и, выраженная в процентах, называется удельным весом.
  2. Относительная величина координации. Определяется, как отношение двух частей одной и той же совокупности. Как правило, самая маленькая по количественному значению часть выбирается в качестве базы сравнения, и все остальные части исходной совокупности сравнивают с этой выбранной частью. Пример: из общей численности населения РФ на начало 2003 года (145,2 млн. человек): городское население составляет 106,4 млн. чел., сельское – 38,8 млн. чел..

 

ОВстр. = 106,4/145,2=0,73 (73%)

ОВстр. = 38,8/145,2=0,27 (27%)

ОВк = 106,4/38,8 = 2,7

  1. Относительная величина сравнения. Определяется, как отношение между двумя одноименными величинами, взятыми за один и тот же период времени, но относящимися к различным совокупностям. Пример: численность российских граждан. Выехавших в 2002 году на постоянное жительство в другие страны характеризуется данными (человек): в Германию – 42231, в Израиль – 2764, в США -3134.

ОВср. = 42231/2764=15,3

ОВср. = 3134/2764=1,1

  1. Относительная величина интенсивности. Это единственная из относительных величин, имеющая единицы измерения, причем, они различны в числителе и знаменателе. Относительную величину интенсивности характеризует степень распространения изучаемого явления в определенной среде. Пример: на начало 2003 года численность населения нашей страны составила 145.2 млн. чел.. Территория страны 17,075 млн. км2.

ОВинт. = 145,2 млн. чел./ 17,075 млн. км2 =8,5 чел/км2

Относительные величины интенсивности  часто называют показателями уровня экономического и социального развития, т. к. в их число входят: объем ВВП на душу населения в год (руб./чел.), потребление основных продуктов питания на человека в год (кг/чел.), обеспеченность населения жильем (м2/чел.) и т. д.

Средние величины.

Средняя величина является одной из важнейших обобщающих характеристик статистики. В средних величинах погашаются индивидуальные различия единиц совокупности, обусловленные случайными обстоятельствами, и находят выражение общие и закономерные черты, свойственные всей совокупности в целом. Индивидуальные значения признака (варианты), из которых вычисляется средняя величина, должны быть одного и того же вида, т. е. должны характеризовать однородные явления и иметь одинаковые единицы измерения.

В каждом конкретном случае средняя  величина имеет определенное, социально-экономическое содержание, обусловленное природой изучаемого объекта. Например: Средняя зарплата первого сотрудника определяется путем деления фонда оплаты труда на численность сотрудников. Средний размер вклада в банке определяется путем деления суммы все вкладов.

В статистике вычисляют степенные и структурные средние величины. Общая формула степенных средних величин имеет следующий вид: . В этой формуле Xi – индивидуальное значение признаков (варианты); ƒi – соответствующие частоты (частости); m – показатель степени. Различают следующие виды степенных средних величин: 1) При m = 1 →  средняя арифметическая величина. 2) При m = -1 → средняя гармоническая величина. 3) При m = 0 → средняя геометрическая величина. 4) При m = 2 → средняя квадратичная величина. 5) При m = 3 → средняя кубическая величина.

Выбор формулы для расчета средней  величины зависит от имеющейся исходной информации.

Средняя арифметическая величина.

Вычисляют простую и взвешенную среднюю арифметическую величину. Формула простой имеет следующий вид: . Эта формула применяется в тех случаях, когда исходные данные не сгруппированы (не образованы в группы пол какому-то признаку) и каждой единице совокупности соответствует определенное значение признака, либо, когда все частоты (частости) равны между собой. Формула средней арифметической взвешенной величины имеет следующий вид: . Эта формула применяется в тех случаях, когда исходные данные сгруппированы, и каждой группе единиц совокупности соответствует определенное значение признака (вариант). Пример: Приводится группировка депутатов фракции «Единство» Государственной Думы по возрасту на 16 января 2002 года:

Возраст депутата (полных лет) (X)

Численность депутатов (кол-во человек) (ƒ)

Середины интервалов (X)

X* ƒ

20-29

1

24,5

24,5

30-39

16

34,5

552

40-49

28

44,5

1246

50-59

30

54,5

1635

60-69

7

64,5

451,5

Итог:

82

 

3909


 

Для расчета средней арифметической величины в интервальном вариационном ряду необходимо: 1) Закрыть имеющиеся открытые интервалы группировки. 2) Найти середины каждого интервала, т. е. привести интервальный ряд к дискретному виду. 3) Найти произведение середин интервалов на соответствующие частоты (частости).

- Средний возраст депутатов  данной фракции.

 

Лекция №4

Математические свойства средней арифметической величины.

    1. Средняя арифметическая постоянной величины равна этой же постоянной величине.
    2. Сумма отклонений индивидуальных значений признака от средней величины равна 0.
    3. Сумма произведений индивидуальных значений признака на соответствующие частоты (частости) равна произведению средней арифметической величины на сумму частот (частостей).
    4. Если все значения признака (варианты) увеличить (уменьшить) на какое-то постоянное число А, то средняя арифметическая величина увеличится (уменьшится) на это же число А.
    5. Если все значения признака (варианты) увеличить (уменьшить) в К раз, где К – постоянное число, то средняя арифметическая величина увеличится (уменьшится) в это же число раз.
    6. Если все частоты (частости) умножить (разделить) на какое-то постоянное число D, то средняя арифметическая величина не изменится.

Расчет средней арифметической величины способом моментов.

Этот способ основан на использовании  математических свойств средней арифметической величины. В этом случае средняя величина вычисляется по формуле: , где i – величина равного интервала или любое постоянное число не равное 0; m1 – момент первого порядка, который рассчитывается по формуле: ; А – любое постоянное число.

Возраст депутата (полных лет) (X)

Численность депутатов (кол-во человек) (ƒ)

Середины интервалов (X)

X-24,5

20-29

1

24,5

0

0

0

30-39

16

34,5

10

1

16

40-49

28

44,5

20

2

56

50-59

30

54,5

30

3

90

60-69

7

64,5

40

4

28

Итог:

82

     

190




Выбираем постоянное число А, которое  будем вычитать из всех значений признака. В нашем случае: А=24,5.

  1. Полученные разности - (Х-А) – делят либо на величину равного интервала, либо на любое постоянное число не равное 0. В нашем случае: i = 10.
  2. Величины умножаем на соответствующие частоты.

m1=190/82=2,317 ; 

Средняя гармоническая  величина.

Вычисляют простую и взвешенную среднюю гармоническую величину. Формула простой средней гармонической величины имеет следующий вид: . Формула средней гармонической взвешенной имеет следующий вид: , где Fi=xi*fi. Эта формула применяется в тех случаях, когда в качестве исходных данных приводятся индивидуальные значения признака (варианты) и произведения индивидуальных значений признака на соответствующие частоты (частости). Пример:

Заработная плата

(руб./мес.), Х

Фонд оплаты труда

(руб.)

5000

25000

5

8500

85000

10

10000

100000

10

15000

60000

4

Итог:

270000

29


(руб.)

Средняя геометрическая величина.

Еще одной формулой, по которой  может осуществляться расчет среднего показателя, является средняя геометрическая величина:

  • Невзвешенная (простая): ,
  • Взвешенная: .

Наиболее широкое применение этот вид средней получил в анализе  динамики для определения среднего темпа роста.

Средняя квадратическая величина.

В основе вычисления ряда сводных расчетных показателей лежит средняя квадратическая:

Невзвешенная (простая): ; Взвешенная: .

Наиболее широко этот вид средней  используется при расчете показателей  вариации.

Структурные средние величины.

К структурным средним величинам  относятся:

  1. Мода (Мо)
  2. Медиана (Ме)
  3. Квартили (Q)
  4. Децили (D)

Все средние структурные являются именованными величинами и выражаются в тех же единицах измерения, что  и значения признака (варианты).

1. Модей в статистике называют значение признака (вариант), который наиболее часто встречается в исходной совокупности. В дискретном вариационном ряду Мо является вариант, имеющий наибольшую частоту. Рассмотрим на примере с семьями:

Число детей

Количество семей

Х

ƒ

0

3

1

8

2

4

3

3

4

2

Итого

20

Информация о работе Лекция по "Статистике"