Автор работы: Пользователь скрыл имя, 09 Июня 2013 в 13:59, курсовая работа
Статистика, наука, занимающаяся изучением приемов систематического наблюдения над массовыми явлениями социальной жизни человека, составлением численных их описаний и научной обработкой этих описаний. Наблюдения, производимые статистиками, выражаются всегда в цифрах и относятся к числу, весу и мере наблюдаемых явлений и предметов; они всегда массовые, то есть относятся к огромному числу однородных предметов и явлений. Численные статистические описания всегда представляются в виде таблиц, каждая цифра, которой есть сумма предметов или явлений взятой для наблюдения массы, расположенной в группы по заранее определенным признакам.
Введение 3
1Вариации 4
1.1 Понятие вариации 4
1.2 Показатели вариации 6
1.3 Формы вариационного ряда 12
2 Статистическое изучение социально-экономических явлений 12
2.1 Статистическое изучение взаимосвязи социально-экономических явлений 12
2.2 Статистическое изучение динамики взаимосвязи социально-экономических явлений 19
2.3 Показатели анализа ряда динамики 21
3 Социально-экономические показатели
3.1 Примеры социально-экономических вариаций, показатели в России 23
3.2
Заключение 29
Список использованной литературы
Рассчитаем коэффициент вариации на основе среднего квадратического отклонения для следующего примера. Расход сырья на единицу продукции составил (кг): по одной технологии при , а по другой — при . Непосредственное сравнение величины средних квадратических отклонений могло бы привести к неверному представлению о том, что вариация расхода сырья по первой технологии интенсивнее, чем по второй ( . Относительная мера вариации ( позволяет сделать противоположный вывод
Выделяют три формы вариационного ряда: ранжированный ряд, дискретный ряд и интервальный ряд.
Ранжированный ряд - это распределение отдельных единиц совокупности в порядке возрастания или убывания исследуемого признака.
Другие формы вариационного ряда - групповые таблицы, составленные по характеру вариации значений изучаемого признака. По характеру вариации различают дискретные (прерывные) и непрерывные признаки.[4]
Дискретный ряд - это такой вариационный ряд, в основу построения которого положены признаки с прерывным изменением (дискретные признаки). К последним можно отнести тарифный разряд, количество детей в семье, число работников на предприятии и т.д. Эти признаки могут принимать только конечное число определенных значений.[5]
Если признак имеет непрерывное изменение (размер дохода, стаж работы, стоимость основных фондов предприятия и т.д., которые в определенных границах могут принимать любые значения), то для этого признака нужно строить интервальный вариационный ряд.
Величина интервала
xmax, min - максимальное и минимальное значение признака, к – число групп.[6]
2 Статистическое изучение
социально-экономических
2.1 Статистическое изучение
взаимосвязи социально
Исследование объективно существующих связей между явлениями - важнейшая задача общей теории статистики. В процессе статистического исследования зависимостей вскрываются причинно-следственные отношения между явлениями, что позволяет выявлять факторы (признаки), оказывающие существенное влияние на вариацию изучаемых явлений и процессов. Причинно-следственные отношения - это связь явлений и процессов, при которой изменение одного из них - причины - ведет к изменению другого - следствия.
Причина - это совокупность условий, обстоятельств, действие которых приводит к появлению следствия. Если между явлениями действительно существуют причинно-следственные отношения, то эти условия должны обязательно реализовываться вместе с действием причин. Причинные связи носят всеобщий и многообразный характер, и для обнаружения причинно-следственных связей необходимо отбирать отдельные явления и изучать их изолированно.
Особое значение при исследовании причинно-следственных связей имеет выявление временной последовательности: причина всегда должна предшествовать следствию, однако не каждое предшествующее событие следует считать причиной, а последующее - следствием.
В реальной социально-экономической действительности причину и следствие необходимо рассматривать как смежные явления, появление которых обусловлено комплексом сопутствующих более простых причин и следствий. Между сложными группами причин и следствий возможны многозначные связи, в которых за одной причиной будет следовать то одно, то другое действие или одно действие будет иметь несколько различных причин. Чтобы установить однозначную причинную связь между явлениями или предсказать возможные следствия конкретной причины, необходима полная абстракция от всех прочих явлений в исследуемой временной или пространственной среде. Теоретически такая абстракция воспроизводится. Приемы абстракции часто применяются при изучении взаимосвязей между двумя признаками (парная корреляция). Но чем сложнее изучаемые явления, тем труднее выявить причинно-следственные связи между ними. Взаимное переплетение различных внутренних и внешних факторов неизбежно приводит к некоторым ошибкам в определении причины и следствия.
Особенностью причинно-
Однако промежуточные факторы, как правило, при анализе опускаются.
Так, например, при использовании
показателей международной
Социально-экономические явления представляют собой результат одновременного воздействия большого числа причин. Следовательно, при изучении этих явлений необходимо, абстрагируясь от второстепенных, выявлять главные, основные причины.
На первом этапе статистического изучения связи осуществляется качественный анализ изучаемого явления методами экономической теории, социологии, конкретной экономики.
На втором этапе строится модель связи на основе методов статистики: группировок, средних величин, таблиц и т. д.
На третьем, последнем этапе интерпретируются результаты; анализ вновь связан с качественными особенностями изучаемого явления.[8]
Статистика разработала множество методов изучения связей, выбор которых зависит от целей исследования и поставленных задач. Связи между признаками и явлениями, ввиду их большого разнообразия, классифицируются по ряду оснований. Признаки по значению для изучения взаимосвязи делятся на два класса. Признаки, обуславливающие изменения других, связанных с ними признаков, называются факторными, или просто факторами. Признаки, изменяющиеся под действием факторных признаков, являются результативными. Связи между явлениями и их признаками классифицируются по степени тесноты связи, направлению и аналитическому выражению.
В статистике различают функциональную связь и стохастическую зависимость. Функциональной называют такую связь, при которой определенному значению факторного признака соответствует одно и только одно значение результативного признака. Функциональная связь проявляется во всех случаях наблюдения и для каждой конкретной единицы исследуемой совокупности.
Если причинная зависимость проявляется не в каждом отдельном случае, а в общем, среднем при большом числе наблюдений, то такая зависимость называется стохастической. Частным случаем стохастической является корреляционная связь, при которой изменение среднего значения результативного признака обусловлено изменением факторных признаков.[9]
По направлению выделяют связь прямую и обратную. При прямой связи с увеличением или уменьшением значений факторного признака происходит увеличение или уменьшение значений результативного. Так, например, рост производительности труда способствует увеличению уровня рентабельности производства. В случае обратной связи значения результативного признака изменяются под воздействием факторного, но в противоположном направлении по сравнению с изменением факторного признака. Так, с увеличением уровня фондоотдачи снижается себестоимость единицы производимой продукции.
По аналитическому выражению выделяют связи прямолинейные (или просто линейные) и нелинейные. Если статистическая связь между явлениями может быть приближенно выражена уравнением прямой линии, то ее называют линейной связью; если же она выражается уравнением какой-либо кривой линии (параболы, гиперболы, степенной, показательной, экспоненциальной и т. д.), то такую связь называют нелинейной, или криволинейной.[10]
В статистике не всегда требуются количественные оценки связи, часто важно определить лишь ее направление и характер, выявить форму воздействия одних факторов на другие. Для выявления наличия связи, ее характера и направления в статистике используются методы приведения параллельных данных; аналитических группировок; графический, корреляционный, регрессионный.
Метод приведения параллельных данных основан на сопоставлении двух или нескольких рядов статистических величин. Такое сопоставление позволяет установить наличие связи и получить представление о ее характере. Сравним изменения двух величин X и У. С увеличением величины X величина У также возрастает. Поэтому связь между ними прямая, и описать ее можно или уравнением прямой, или уравнением параболы второго порядка.[11]
Для социально-экономических явлений характерно, что наряду с существенными факторами, формирующими уровень результативного признака, на него оказывают воздействие многие другие неучтенные и случайные факторы. Это свидетельствует о том, что взаимосвязи явлений, которые изучает статистика, носят корреляционный характер и аналитически выражаются функцией вида .
Корреляционный метод имеет своей задачей количественное определение тесноты связи между двумя признаками (при парной связи) и между результативным и множеством факторных признаков (при многофакторной связи).[12]
Корреляция - это статистическая зависимость между случайными величинами, не имеющими строго функционального характера, при которой изменение одной из случайных величин приводит к изменению математического ожидания другой.[13]
В статистике различаются следующие варианты зависимостей:
Теснота связи количественно выражается величиной коэффициентов корреляции. Коэффициенты корреляции, представляя количественную характеристику тесноты связи между признаками, дают возможность определить «полезность» факторных признаков при построении уравнений множественной регрессии. Величина коэффициента корреляции служит также оценкой соответствия уравнения регрессии выявленным причинно-следственным связям.
Первоначально исследования корреляции проводились в биологии, а позднее распространились и на другие области, в том числе на социально-экономическую. Одновременно с корреляцией начала использоваться и регрессия. Корреляция и регрессия тесно связаны между собой: корреляция оценивает силу (тесноту) статистической связи, регрессия исследует ее форму. Та и другая служат для установления соотношения между явлениями, для определения наличия или отсутствия связи.
Корреляционный и регрессионный анализ как общее понятие включает в себя измерение тесноты, направления связи и установление аналитического выражения (формы) связи (регрессионный анализ).[14]
Регрессионный метод заключается в определении аналитического выражения связи, в котором изменение одной величины (называемой зависимой или результативным признаком) обусловлено влиянием одной или нескольких независимых величин (факторов), а множество всех прочих факторов, также оказывающих влияние на зависимую величину, принимается за постоянные и средние значения. Регрессия может быть однофакторной (парной) и многофакторной (множественной).
По форме зависимости различают:
линейную регрессию, которая выражается уравнением прямой (линейной функцией) вида:
нелинейную регрессию, которая выражается уравнениями вида:
парабола;
гипербола и т.д.
По направлению связи различают:
Положительную и отрицательную регрессии можно легче понять, если использовать их графическое изображение.
Для простой (парной) регрессии в условиях, когда достаточно полно установлены причинно-следственные связи, приобретает практический смысл только последнее положение; при множественности причинных связей невозможно четко отграничить одни причинные явления от других.[15]
2.2 Статистическое изучение
динамики взаимосвязи
Процесс развития, движения
социально-экономических
Составными элементами ряда динамики являются показатели уровней ряда и периоды времени (годы, кварталы, месяцы, сутки) или моменты (даты) времени.
Информация о работе Примеры социально-экономических вариаций, показатели в России