Способы наглядного представления и изображения статистических данных

Автор работы: Пользователь скрыл имя, 27 Мая 2014 в 14:47, научная работа

Описание работы

Современную статистическую науку невозможно представить без применения графиков. Они стали средством научного обобщения.
Выразительность, доходчивость, лаконичность, универсальность, обозримость графических изображений сделали их незаменимыми в исследовательской работе и в международных сравнениях и сопоставления социально-экономических явлений.
Значение графического метода в анализе и обобщении данных велико. Графическое изображение прежде всего позволяет осуществить контроль достоверности статистических показателей, так как, представленные на графике, они более ярко показывают имеющиеся неточности, связанные либо с наличием ошибок наблюдения, либо с сущностью изучаемого явления.

Содержание работы

Введение…………………………………………………………………………..3
1. Статистическая таблица: понятие, виды, чтение и анализ……………..….4
1.1 Понятие и элементы статистической таблицы………………………….4
1.2 Виды таблиц по характеру подлежащего……………………………….6
1.3 Виды таблиц по разработке сказуемого………………………………...12
1.4 Основные правила построения таблиц, чтение и анализ……………...15
1.5 Матрицы и таблицы сопряженности……………………………………19
2. Статистические графики: понятие, значение и классификация………..…21
2.1 Понятие и элементы статистического графика……………………..…21
2.2 Классификация видов графиков ………………………………………..26
2.3 Диаграммы сравнения……………………………………………………27
2.4 Структурные диаграммы………………………………………..……….35
2.5 Диаграммы динамики……………………………………………………38
2.6 Статистические карты……………………………………………..…….41
Заключение ………………………………………………………………………43
Список использованных источников…………………………………………..44

Файлы: 1 файл

Dokument_Microsoft_Word_4 (1).docx

— 667.91 Кб (Скачать файл)

Рис. 5.2. Числовые интервалы

Носитель шкалы может представлять собой как прямую, так и кривую линии. Поэтому различают шкалы прямолинейные (например, миллиметровая линейка) и криволинейные - дуговые и круговые (циферблат часов).

Графические и числовые интервалы бывают равными и неравными. Если на всем протяжении шкалы равным графическим интервалам соответствуют равные числовые, такая шкала называется равномерной. Когда же равным числовым интервалам соответствуют неравные графические интервалы и наоборот, шкала называется неравномерной.

Масштабом равномерной шкалы называется длина отрезка (графический интервал), принятого за единицу и измеренного в каких-либо мерах. Чем меньше масштаб (рис. 5.3), тем гуще располагаются на шкале точки, имеющие одно и то же значение. Построить шкалу -это значит на заданном носителе шкалы разместить точки и обозначить их соответствующими числами согласно условиям задачи.

Как правило, масштаб определяется примерной прикидкой возможной длины шкалы и ее пределов. Например, на поле в 20 клеток надо построить шкалу от 0 до 850. Так как 850 не делится удобрю на 20, то округляем число 850 до ближайшего удобного числа,

 

Рис. 5.3. Масштабы

в данном случае 1000 (1000 : 20 = 50), т. е. в одной клетке 50, а в двух клетках 100; следовательно, масштаб - 100 в двух клетках.

Из неравномерных наибольшее распространение имеет логарифмическая шкала. Методика ее построения несколько иная, так как на этой шкале отрезки пропорциональны не изображаемым величинам, а их логарифмам. Так, при основании 10 1д1 = О-1д1 = 0 = 1; 1д100 = 2 и т. д. (рис. 5.4).

Последний элемент графика - экспликация. Каждый график должен иметь словесное описание его содержания. Оно включает в себя название графика, которое в краткой форме передает его содержание; подписи вдоль масштабных шкал и пояснения к отдельным частям графика.

 

2.2 Классификация  видов графиков

Существует множество видов графических изображений (рис. 5.5; 5.6). Их классификация основана на ряде признаков: а) способ построения графического образа; б) геометрические знаки,

 

Рис. 5.5. Классификация статистических графиков по форме графического образа

изображающие статистические показатели; в) задачи, решаемые с помощью графического изображения.

По способу построения статистические графики делятся на диаграммы и статистические карты.

Диаграммы - наиболее распространенный способ графических изображений. Это графики количественных отношений. Виды и способы их построения разнообразны. Диаграммы применяются для наглядного сопоставления в различных аспектах (пространственном, временном и др.) независимых друг от друга величин:

территорий, населения и т. д. При этом сравнение исследуемых

Рис. 5.6. Классификация статистических графиков по способу построения и задачам изображения

 

совокупностей производится по какому-либо существенному варьирующему признаку Статистические карты - графики количественного распределения по поверхности. По своей основной цели они близко примыкают к диаграммам и специфичны лишь в том отношении, что представляют собой условные изображения статистических данных на контурной географической карте, т. е. показывают пространственное размещение или пространственную распространенность статистических данных. Геометрические знаки как было сказано выше, - это либо точки, либо линии или плоскости, либо геометрические тела. В соответствии с этим различают графики точечные, линейные, плоскостные и пространственные (объемные).

При построении точечных диаграмм в качестве графических образов применяются совокупности точек; при построении линейных - линии. Основной принцип построения всех плоскостных диаграмм сводится к тому, что статистические величины изображаются в виде геометрических фигур и, в свою очередь, подразделяются на столбиковые, полосовые, круговые, квадратные и фигурные.

Статистические карты по графическому образу делятся на картограммы и картодиаграммы.

В зависимости от круга решаемых задач выделяют диаграммы сравнения, структурные диаграммы и диаграммы динамики.

Особым видом графиков являются диаграммы распределения величин, представленных вариационным рядом. Это гистограмма полигон, огива, кумулята.

 

2.3 Диаграммы сравнения

 

Наиболее распространенными диаграммами сравнения являются столбиковые диаграммы, принцип построения которых состоит в изображении статистических показателей в виде поставленных по вертикали прямоугольников - столбиков. Каждый столбик изображает величину отдельного уровня исследуемого статистического ряда. Таким образом, сравнение статистических показателей возможно потому, что все сравниваемые показатели выражены в одной единице измерения.

При построении столбиковых диаграмм необходимо начертить систему прямоугольных координат, в которой располагаются столбики. На горизонтальной оси располагаются основания столбиков, величина основания определяется произвольно, но устанавливается одинаковой для всех.

 

Шкала, определяющая масштаб столбиков по высоте, расположена по вертикальной оси. Величина каждого столбика по вертикали соответствует размеру изображаемого на графике статистического показателя. Таким образом, у всех столбиков, составляющих диаграмму, переменной величиной является только одно измерение. Покажем построение столбиковой диаграммы по данным табл. 5.1, характеризующим вклады граждан в учреждения Сбербанка в 1995 г. (рис. 5.7).

Таблица 5.1

Вклады граждан в учреждения Сбербанка в 1995 г. (цифры условные)

Месяц

1

2

3

4

5

6

7

8

9

10

11

12

Вклад,

550

560

560

640

640

1100

1100

1100

1630

1610

1610

2500

млрд. руб.

                       

 

В соответствии с изложенными выше правилами на горизонтальной оси размещаются основания двенадцати столбиков на Одинаковом расстоянии друг от друга, в данном случае 0,5 см. ширина столбиков принята 0,5 см. Масштаб на оси ординат - 500 млрд. руб. - 1 см. Наглядность данной диаграммы достигается Равнением величины столбиков.

 
 

Размещение столбиков в поле графика может быть различным-

• на одинаковом расстоянии друг от друга (рис. 5.7);

• вплотную друг к другу (рис. 5.8);

• в частном наложении друг на друга (рис. 5.9).

Рис. 5.8. Динамика выпуска книг и брошюр в одном из регионов России за 1993-1995 гг.

Рис. 5.9. Динамика денежных доходов населения в регионе за 1993-1995 гг.

Правила построения столбиковых диаграмм допускают одновременное расположение на одной горизонтальной оси изображений нескольких показателей. В этом случае столбики располагаются группами, для каждой из которых может быть принята разная размерность варьирующих признаков (рис. 5.10).

Разновидности столбиковых диаграмм составляют так называемые ленточные или полосовые диаграммы. Их отличие состоит в том, что масштабная шкала расположена по горизонтали сверху или снизу и она определяет величину полос по длине.

Рис. 5.10. Динамика производства некоторых видов товаров хозяйственного потребления за 1993-1995 гг.

Область применения столбиковых и полосовых диаграмм одинакова, так как идентичны правила их построения. Одномерность изображаемых статистических показателей и их одномасштабность для различных столбиков и полос требуют выполнения единственного положения: соблюдения соразмерности (столбиков - по высоте, полос - по длине) и пропорциональности изображаемым величинам. Для выполнения этого требования необходимо: во-первых, чтобы шкала, по которой устанавливается размер столбика (полосы), начиналась с нуля; во-вторых, эта шкала должна быть непрерывной, т. е. охватывать все числа данного статистического ряда; разрыв шкалы и соответственно столбиков (полос) не допускается. Невыполнение указанных правил приводит к искаженному графическому представлению анализируемого статистического материала.

В качестве примера приведем полосовую диаграмму сравнения поданным табл. 5.2 (рис. 5.11). : Столбиковые и полосовые диаграммы как прием графического изображения статистических данных, по существу, взаимозаменяемы, т. е. рассматриваемые статистические показатели равно могут быть представлены как столбиками, так и полосами. И в этом, и в другом случае для изображения величины явления используется одно измерение каждого прямоугольника - высота столбика или длина полосы. Поэтому и сфера применения этих двух видов Диаграмм в основном одинакова.

9* Таблица 5.2

Общий объем промышленного производства в некоторых странах СНГ в 1 квартале 1995 г. (в % к I кварталу 1994 г.) (цифры условные)

Страны СНГ

Общий объем промышленного производства

Казахстан

88,7

Беларусь

83,5

Россия

80,7

Кыргызстан

77,6

Таджикистан

71,8

Армения

41,6


 

Рис. 5.11. Общий объем промышленного производства в странах СНГ в I квартале 1995 г. (в % к I кварталу 1994 г.)

Разновидностью столбиковых (ленточных) диаграмм являются направленные диаграммы. Они отличаются от обычных двусторонним расположением столбиков или полос и имеют начало отсчета по масштабу в середине. Обычно такие диаграммы применяются для изображения величин противоположного качественного значения. Сравнение между собой столбиков (полос), направленных в разные стороны, менее эффективно, чем расположенных рядом в одном направлении. Несмотря на это, анализ направленных диаграмм позволяет делать достаточно содержательные выводы, так как особое расположение придает графику яркое изображение. К группе двусторонних относятся диаграммы числовых отклонений. В них полосы направлены в обе стороны от вертикальной нулевой линии: вправо -для прироста; влево -для уменьшения. С помощью таких диаграмм удобно изображать отклонения от плана или некоторого уровня, принятого за базу сравнения. Важным достоинством рассматриваемых диаграмм является возможность видеть размах колебаний изучаемого статистического признака, что само по себе имеет большое значение для экономического анализа (рис. 5.12).

Рис. 5.12. Распределение населения одного из регионов России по полу и возрасту в 1995 г.

Для простого сравнения независимых друг от друга показателей могут также использоваться диаграммы, принцип построения которых состоит в том, что сравниваемые величины изображаются в виде правильных геометрических фигур, которые строятся так, чтобы площади их относились между собой как количества, этими фигурами изображаемые. Иными словами, эти диаграммы выражают величину изображаемого явления размером своей площади.

Для получения диаграмм рассматриваемого типа используют разнообразные геометрические фигуры - квадрат, круг, реже - прямоугольник. Известно, что площадь квадрата равна квадрату его стороны, а площадь круга определяется пропорционально квадрату его радиуса. Поэтому для построения диаграмм необходимо сначала из сравниваемых величин извлечь квадратный корень. Затем

на базе полученных результатов определить сторону квадрата или радиус круга соответственно принятому масштабу

Например, если изобразить в виде квадрата или круга поставки российского газа в ближайшее зарубежье, то сначала нужно извлечь квадратные корни из этих цифр (табл. 5.3).

Таблица 5.3

Поставки российского газа в страны ближнего зарубежья, январь - август 1995 г.

Страны ближнего зарубежья

Млн. м3

Украина Беларусь Литва

44460,1 10 250,0 2 458,0


 

Это составит: для Украины - 210,9; Беларуси - 101,2; Литвы -49,6. Затем установить масштаб и по этим данным построить квадраты. Для нашего примера примем 1см равным 30 млн. м3. Тогда сторона первого квадрата составит 7,03 см (210,9 : 30); второго-3,4 см; третьего - 1,65 см (рис. 5.13).

Рис. 5.13. Поставки российского газа в страны ближнего зарубежья, январь-август 1995 г.

Для правильного построения диаграмм квадраты или круги необходимо расположить на одинаковом друг от друга расстоянии, а в каждой фигуре указать числовое значение, которое она изображает, не приводя масштаба измерения.

К рассматриваемому виду диаграмм относится графическое изображение, полученное путем построения один в другом квадратов, кругов или прямоугольников с различной заштриховкой или закраской. Такие диаграммы также позволяют сравнивать между собой ряд исследуемых величин. На рис. 5.14 показан такой вариант круговой диаграммы.

Наиболее выразительным и легко воспринимаемым является способ построения диаграмм сравнения в виде фигур-знаков. В этом случае статистические совокупности изображаются не геометрическими фигурами, а символами или знаками, воспроизводящими в какой-то степени внешний образ статистических данных. Достоинство такого способа графического изображения заключается в высокой степени наглядности, в получении подобного отображения, отражающего содержание сравниваемых совокупностей.

Важнейший признак любой диаграммы - масштаб. Поэтому, чтобы правильно построить фигурную диаграмму, необходимо определить единицу счета. В качестве последней принимается отдельная фигура (символ), которой условно присваивается

 

конкретное численное значение. А исследуемая статистическая величина изображается отдельным количеством одинаковых по размеру фигур, последовательно располагающихся на рисунке. Однако в большинстве случаев не удается изобразить статистический показатель целым количеством фигур. Последнюю из них приходится делить на части, так как по масштабу один знак является слишком крупной единицей измерения. Обычно эта часть определяется на глаз. Сложность точного ее определения является недостатком фигурных диаграмм. Однако, если большая точность представления статистических данных не преследуется, то результаты получаются вполне удовлетворительными.

Информация о работе Способы наглядного представления и изображения статистических данных