Задачи по "Статистике"

Автор работы: Пользователь скрыл имя, 26 Ноября 2012 в 18:34, задача

Описание работы

а) Вычислим среднемесячную заработную плату за базисный период:

б) Вычислим среднемесячную заработную плату за отчетный период. Так как по условию задан фонд заработной платы (w), воспользуемся формулой средней гармонической:

Файлы: 1 файл

СТАТИСТИКА.docx

— 226.32 Кб (Скачать файл)

Расчеты аналитических показателей  ряда динамики представим в      таблице 2.3.  

                  

 

                                                                                                               Таблица 2.3

 

Год

Прожиточный минимум, руб./мес.

                 

                                     Показатели

Абсолютный прирост,  руб.,

Темп роста, Тр, %

Темп прироста, Тпр, %

Абсолютное значение 1% прироста, А

цеп.

баз.

цеп.

баз.

цеп.

баз.

цеп.

баз.

1996

0

264,1

-

-

100

100

-

-

-

-

1997

1

369,4

105,3

105,3

139,88

139,88

39,88

39,88

2,64

2,64

1998

2

411,2

41,8

147,1

111,32

155,7

11,32

55,7

3,7

2,64

1999

3

493,3

82,1

229,2

120

186,8

20

86,8

4,11

2,64

2000

4

908,3

415

644,2

184,13

343,9

84,13

243,9

4,93

2,64

2001

5

1180,4

272,1

916,3

129,96

446,95

29,96

346,95

9,08

2,64


    1. Средние показатели ряда динамики:

- средний уровень ряда  динамики

- среднегодовой темп роста  и среднегодовой темп прироста

Средний темп роста и средний  темп прироста характеризуют соответственно темпы роста и прироста за период в целом. Средний темп роста рассчитывают по данным ряда динамики по формуле  средней геометрической: . Исходя из соотношения темпов роста и прироста, определяется средний темп прироста: .

За период 1996-2001 гг. средний  прожиточный минимум ежегодно увеличивается  на 34,91%.

  1. По данным таблицы 2.2 вычислим индексы сезонности и изобразим графическую сезонную волну.

Уровень сезонности оценивается  с помощью индексов сезонности. Индекс сезонности показывает, во сколько  раз фактический уровень ряда в момент или интервал времени  больше среднего уровня. Он определяется по формуле: , где - уровень сезонности, - текущий уровень ряда динамики, - средний уровень ряда.

Средний уровень ряда определяем по  формуле 

                                                                                                               Таблица 2.4

Месяц

Товарооборот магазина, тыс. руб.

Январь

316

235,82%

Февраль

283

211,19%

Март

140

104,48%

Апрель

79

58,96%

Май

55

41,04%

Июнь

32

23,88%

Июль

77

57,46%

Август

7

5,22%

Сентябрь

30

22,39%

Октябрь

201

150,00%

Ноябрь

125

93,28%

Декабрь

263

196,27%

Итого

1608

 

                                                                     

 

                                               Рис. 1 График сезонной волны.

Наименьший товарооборот приходится на август, наибольший – на январь.

Задание №4.

    Объем товарооборота  за отчетный год в фактических  ценах возрос на 36%, а цены снизились  на 15%. Определить, как изменился  физический объем товарооборота.

Решение:

    Сводный индекс  товарооборота  показывает, на сколько % изменился товарооборот за отчетный год по сравнению с базисным годом.  Следовательно, товарооборот за отчетный год равен 136% или .

    Сводный индекс  цены показывает, на сколько % изменились цены. Следовательно, цены за отчетный год соответствуют 100% - 15% = 85% или

.

   Сводный индекс  физического объема показывает, как изменился объем товарооборота.

    Зная формулу  связи сводных индексов  , получим .

Вывод: Физический объем товарооборота в отчетном году по сравнению с базисным годом увеличился на 60%.

Задание №5.

     Произведено выборочное обследование длительности производственного стажа рабочих. В выборке было взято 200 рабочих из общего количества в 1000 человек. Результат выборки следующий:

Стаж, годы

2-4

4-6

6-8

8-10

Число рабочих

50

80

45

25


На основании приведенных  данных определить:

1) с вероятностью 0,917 возможные пределы колебаний средней продолжительности стажа всех рабочих;

2) какое число рабочих надо взять в выборку, чтобы ошибка не превышала 1 года, на основе приведенных выше показателей.

Решение:

1) По условию задачи  дано число единиц генеральной  совокупности  человек, число единиц выборочной совокупности человек, вероятность .

Так как приведена бесповторная выборка, то предельная ошибка в выборке  , где t – коэффициент доверия (находится по таблице).

Вычислим дисперсию

Вычислим средний стаж работы

Составим расчетную таблицу 3.1:

                                                                                                                     Таблица 3.1

Стаж, годы

2-4

4-6

6-8

8-10

Итого

Число рабочих 

50

80

45

25

200

Середина интервала 

3

5

7

9

 

150

400

315

225

1090


лет.

Составим расчетную таблицу 3.2:

                                                                                                                     Таблица 3.2

Стаж, годы

2-4

4-6

6-8

8-10

Итого

Число рабочих 

50

80

45

25

200

Середина интервала 

3

5

7

9

 

-2,45

-0,45

1,55

3,55

 

6

0,2

2,4

12,6

21,2

300

16,2

108

315

739,2


По вычисленным данным можем найти 

 

Тогда лет

   С вероятностью 0,917 вычислим пределы, в которых колеблется средняя продолжительность стажа всех рабочих

        

           

           

С вероятностью 0,917 ,  средняя продолжительность стажа всех рабочих колеблется от 5,24 лет до 5,66 лет.

2) Найдем численность выборки , при средней ошибке в выборке год

человека.

Вывод: 1) С вероятностью 0,917 ,  средняя продолжительность стажа всех рабочих колеблется от 5,24 лет до 5,66 лет.

2) Численность выборки  равна приблизительно 4 человека.

Задание №6.

По данным таблицы 4.1 определите:

- естественный, механический  и общий прирост населения;

- оборот миграционных  процессов;

- коэффициенты: общие коэффициенты  рождаемости и смертности, коэффициент  фертильности, коэффициент жизненности  Покровского, коэффициенты брачности  и разводимости, коэффициенты естественного,  механического и общего прироста населения;

- численность населения  через 5 лет.

По данным таблицы 4.2 определите тип возрастной структуры и изобразите ее графически.

Охарактеризуйте демографическую  ситуацию.

                                                                                                                  Таблица 4.1

                               Демографические показатели

Показатели

Единица измерения

Вариант 6

Численность населения на конец года

Млн. чел.

147,0*

Численность женщин на 1000 мужчин

Чел.

1196

Доля женщин в возрасте 15-49 лет в общей численности  женщин

%

43

Родилось

Тыс. чел.

1988,9

Умерло

- « -

1656,0

Прибыло в страну

- « -

913,2

Выбыло из страны

- « -

729,5

Число браков

- « -

1319,9

Число разводов

- « -

559,9


*) на начало года численность  населения составила 147,2 млн. чел.

Информация о работе Задачи по "Статистике"