Автор работы: Пользователь скрыл имя, 25 Декабря 2014 в 13:58, реферат
Весь окружающий нас мир построен всего лишь из трех частиц: электро¬нов, протонов и нейтронов, и можно лишь поражаться тому многообразию веществ, которые из них возникают. В зависимости от состава, температуры, давления вещество может быть в газообразном, жидком или твердом состоянии. Рядом со сверхтвердым алмазом и жаропрочным асбестом соседствуют мягкий воск и легко воспламеняющаяся бумага. Наряду с прекрасно проводящими электрический ток медью и алюминием — изоляторы, такие как фарфор и слюда. Задача физики — понять первопричину всего этого многообразия окружающего нас мира, объяснить наблюдаемые феномено¬логические закономерности и уметь предсказывать свойства новых веществ и соединений.
Введение . Роль, предмет и задачи физики твердого тела.
1.1. Кристаллические и аморфные тела.
1.2. Типы кристаллических решеток.
1.3. Кристаллографические обозначения (индексы Миллера - для узлов, направлений и плоскостей).
1.4. Ближний и дальний порядок в кристаллических веществах. Жидкие кристаллы.
1.5. Связь структуры с физическими свойствами веществ. Анизотропия кристаллов. Полиморфизм.
1.6. Упругое рассеяние рентгеновских лучей и нейтронов в кристаллах
1.7. Дефекты кристаллов.
Естественно, что кристалл выступает как однородная, непрерывная и анизотропная среда только по отношению к своим макроскопическим свойствам, но эти макроскопические свойства, в конце концов, определяются силами, действующими между структурными элементами пространственной решетки, а, следовательно, природой самих ионов, атомов или молекул, из которых построен кристалл. Этим же определяются и законы повторяемости структурных элементов пространственной решетки, ее симметрия. Это значит, что все физические свойства макроскопического кристалла связаны с его симметрией.
Каковы же элементы симметрии пространственной фигуры? Это воображаемые геометрические образы: точки, прямые и плоскости, относительно которых однообразно располагаются части фигур. Наличие плоскости симметрии свидетельствует о том, что одна часть фигуры совместится с другой, если перенести все ее точки по другую сторону плоскости по перпендикулярам к ней на равные расстояния. В таком случае говорят также, что это соответствует зеркальной симметрии фигуры.
Зеркальная симметрия, или симметрия левого и правого, широко распространена в природе. Почти одновременно понятие симметрии возникло в архитектуре и скульптуре как синоним гармоничности и красоты. Даже без строгих определений каждый скажет, что тело человека обладает зеркальной симметрией. На рис. 1.1.5 изображен рисунок Леонардо да Винчи, иллюстрирующий зеркальную симметрию человеческого тела. Зеркальной симметрией обладают листья деревьев и трав, насекомые, птицы и звери.
Ось симметрии -- это прямая, при повороте вокруг которой на определенный угол фигура или части фигуры совмещаются сами с собой. Порядок оси или число совмещений при повороте на 360° определяется выражением
(1.1)
где б -- угол наименьшего поворота, приводящего фигуру в совмещение. Порядок оси ---целое число, и потому возможны следующие оси симметрии: ось первого порядка (n = 1), это естественно возможно для любой фибуры( ибо при повороре на б = 360° фигура совмещается сама с собий, второго (б = 180°), третьего (б 9 120°) и т.д. На рис. 1.1.6 изображены составленные из тетраэдров геометрические фигуры, иллюстрирующие различные законы их симметрии. На рис. 1.1.6 а показаны четыре одинаковых тетраэдра, в их расположении нет закономерности. Но эти тетраэдры можно расположить так, что получатся фигуры с осями 2, 3 и 4 порядка, приведенные на рис. 1.1.6 в, г, д. На рис. 7.6 6 показана фигура, составленная из таких же тетраэдров, но обладающая плоскостью симметрии. На рисунке эта плоскость проходит через ось CD, Рис. 1.1.5, 1.1.6
при отражении в этой плоскости вершины левого тетраэдра А и В переходят в вершины А' и В' правого тетраэдра.
Элементы симметрии не исчерпываются только плоскостью и поворотными осями симметрии. Представим себе, что два тетраэдра связаны как бы осью симметрии второго порядка, но при этом их вершины направлены в противоположные стороны (см. рис. 1.1.6 е). Как понять такую операцию? В принципе это очень просто. Имеется особая точка (ее называют центр инверсии, или центр симметрии) -- общая вершина двух тетраэдров, -- отражением в которой фигура совмещается сама с собой.
Материальные фигуры и тем более кристаллы обладают, как правило, не одним элементом симметрии. Вот, например, книга: у нее кроме оси второго порядка есть еще две плоскости симметрии, проходящие через эту ось. Кроме того, как и всякая фигура, книга преобразуется в себя при повороте на 360°, т. е. у нее присутствует ось первого порядка.
Полный набор элементов симметрии какой-либо материальной фигуры называется группой (видом) симметрии этой фигуры. Почему для физики особое значение имеют группы симметрии? Оказывается, что именно они чаще всего определяют то или иное физическое явление в кристаллах.
1.2. Типы кристаллических решеток
В основе кристаллической решетки лежит элементарная кристаллографическая ячейка, представляющая собой параллелепипед с характерным для данной решетки расположением атомов.
Важнейшим геометрическим свойством кристаллов, кристаллических решеток и их элементарных ячеек является, как мы уже обсуждали в предыдущем параграфе, симметрия по отношению к определенным направлениям (осям) и плоскостям. Число возможных видов симметрии ограничено. Французский кристаллограф О. Браве в 1848 г. положил начало геометрической теории структуры кристаллов и показал, что в зависимости от соотношения величин и взаимной ориентации ребер элементарной кристаллической ячейки может существовать 14 типов кристаллических решеток, которые получили название решеток Браве.
Различают примитивные (простые), базоцентрированные, объемноцентрированные и гранецентрированные решетки Браве. Если узлы кристаллической решетки расположены только в вершинах параллелепипеда, представляющего собой элементарную ячейку, то такая решетка называется примитивной или простой. Если же, кроме того, имеются узлы в центре основания параллелепипеда, то решетка называется базоцентрированной, если есть узел в месте пересечения пространственных диагоналей -- решетка называется объемноцентрированной, а если имеются узлы в центре всех боковых граней -- гранецентрированной.
Почти половина всех элементов образует кристаллы кубической или гексагональной симметрии, которые мы рассмотрим подробно. В кристаллах кубической системы возможны три решетки: простая, объемноцентрированная и гранецентрированная. В кубической системе все углы элементарной ячейки прямые и все ребра ее равны между собой. Элементарная ячейка гексагональной системы представляет собой прямую призму, в основании которой лежит ромб с углами 60 и 120°. Два угла между осями ячейки прямые, а один равен 120°.
Во многих случаях можно считать, что кристалл представляет собой систему из соприкасающихся твердых шаров. Минимуму энергии будет соответствовать такая структура, в которой шары наиболее плотно упакованы. Плотность упаковки или коэффициент компактности определяется отношением объема частиц к объему элементарной ячейки, Уа. В случае частиц одного сорта кратчайший период а и соотношение между радиусом шаров R и а определяет контакт между соседними шарами.
Сравним между собой в такой модели три возможных кубических структуры.
1. Простая кубическая ячейка, когда атомы находятся лишь в узлах куба: в этом случае на одну примитивную ячейку приходится один атом.
2. Гранецентрированная кубическая решетка {г. ц. к.): атомы находятся не только в узлах, но и посредине шести граней; такую структуру имеет, например, хлористый натрий.
3. Объемноцентрированная кубическая решетка (о, ц. к.): атомы находятся в узлах куба, и, кроме того, один в его центре.
Наиболее «рыхлой» оказывается структура простого куба, и химические элементы «предпочитают» не кристаллизоваться в такие структуры, хотя многие вещества в кристаллическом состоянии обладают структурой простого куба -- например, CsCl, CuPd, BeCu, LiHg. Наибольшей компактностью обладает г. ц. к. структура, поэтому ее называют также кубической структурой с плотной упаковкой. Однако расположить одинаковые твердые шары в пространстве так, чтобы остающийся между ними объем был минимален, можно и другим способом -- образуя гексагональную плотную упаковку (г. п. у.), причем в этой структуре плотность упаковки оказывается равной 0,74, как и в г. ц. к.
Типы
связей в кристаллах
Классификация кристаллов по кристаллическим системам дает представление о геометрических характеристиках кристалла, но не затрагивает вопроса о природе сил, удерживающих атомы (молекулы или ионы) в определенных местах друг относительно друга -- в узлах кристаллической решетки. Классификацию кристаллов можно провести по другому принципу -- в зависимости от физической природы сил, действующих между частицами кристалла. В таком случае мы получаем четыре типа кристаллов (и кристаллических решеток): ионные, атомные, металлические и молекулярные. Фактически, рассматривая кристаллы с этой точки зрения, мы ищем структуру основного состояния.
Атомные кристаллы. В узлах кристаллической решетки атомных кристаллов находятся атомы того или другого вещества. Атомные или го-меополярные кристаллы образуются при наличии так называемой гомеопо-лярной или ковалентной связи. Такая связь есть результат квантовомеха-нического обменного взаимодействия, которое подробно разбиралось раньше на примере молекулы водорода. Ковалентная химическая связь возникав!' между двумя атомами за счет образования общей пары валентных электронов по одному от каждого атома. За счет ковалентных связей образуются кристаллы углерода (алмаз), кремния, германия, серого олова. Гомеопо-лярная связь бывает не только между одинаковыми атомами, но и между атомами различных элементов -- например, карбид кремния SiC, нитрид алюминия A1N
Ковалентная связь образуется в том направлении, в котором расположена наибольшая часть электронного облака обобществленных электронов. Это означает, что такая связь имеет направленный характер и под влиянием го-меополярной связи атомы не только устанавливаются на определенных расстояниях друг от друга, но и образуют определенные пространственные конфигурации. Ковалентная химическая связь очень прочна, поэтому атомные кристаллы отличаются высокой температурой плавления, большой твердостью и малой летучестью.
Ионные кристаллы. В узлах кристаллической решетки ионных кристаллов находятся ионы. Ионы располагаются так, что силы кулоновского притяжения между ионами противоположного знака больше, чем силы отталкивания между ионами одного знака. Таким образом, ионная связь (она также называется полярной, гетерополярной) обусловлена преимущественно электростатическим взаимодействием противоположно заряженных ионов. Ионная связь является типичной для неорганических соединений. Силы электростатического притяжения и отталкивания между ионами обладают сферической симметрией, и поэтому ионы разных знаков ведут себя подобно твердым шарам, притягивающимся друг к другу.
Возникает естественный вопрос: почему многие атомы легко присоединяют электрон и становятся электроотрицательными ионами (как, например, хлор)? Казалось бы, у нейтрального атома нет сил кулоновского взаимодействия с электроном. На самом деле, действительно, взаимодействие нейтрального атома с электроном не является следствием статического притяжения. Электрон наводит в атоме электрический днпольный момент, в результате чего возникает потенциал притяжения, пропорциональный 1/г* и действующий на больших расстояниях. Во многих случаях этот поляризационный потенциал притяжения достаточно велик для того, чтобы свободный атом смог присоединить добавочный электрон.
Число ионов противоположного знака, которое составляет ближайшее окружение данного иона в кристалле, называется координационным числом К. Значение координационного числа определяется величиной отношения радиусов ионов противоположного знака гл/гд. Чем ближе это отношение к единице, тем больше К. Так, например, при равенстве ионных радиусов (гл = гд) К = 12, при гд/гв < 0,22 координационное число К -- 2.
Достаточно хорошей моделью ионных кристаллов является модель твердых шаров. Это связано с тем, что степень ионизации атомов, составляющих ионный кристалл, часто такова, что электронные оболочки всех ионов соответствуют электронным оболочкам, характерным для атомов инертных газов. Так, например, электронная оболочка иона Na+ подобна Ne, иона С1~ -- Аг, и тем самым ионный кристалл состоит как бы из сферических заряженных атомов. Поэтому тип решетки ионных кристаллов практически определяется соотношением ионных радиусов. Например, кристаллы хлористого натрия имеют структуру граненентрированной кубической решетки вследствие того, что размер иона хлора (1,81 А) почти вдвое превышает размер иона натрия (0,98 А); при таком соотношении ионных радиусов в центре кубической ячейки хлористого натрия свободное пространство оказывается недостаточным для размещения еще одного иона и образования объсмноцен-трированной ячейки. Иначе обстоит дело с кристаллом хлористого цезия. Размеры ионов хлора и цезия близки (1,81 и 1,65 А), пространство и центре элементарного куба оказывается достаточным для размещения еще одного иона, и энергетически выгоднее оказывается более плотно упакованная структура -- объемноцептрированный куб.
Металлические кристаллы. Как и в ковалептных кристаллах, в узлах пространственной решетки металлических кристаллов размещаются совершенно одинаковые частицы (для простоты рассуждений мы будем рассматривать чистые металлы, а не сплавы). При конденсации паров металла в жидкое или твердое состояние его атомы сближаются столь близко, что волновые функции валентных электронов существенно перекрываются и становятся «общими» для всего объема металла. Поэтому валентные электроны п металлах принято называть обобществленными или коллективизированными. Можно говорить в таком случае, что внутри металлического кристалла имеется свободный электронный газ. Электроны связывают положительные ионы металла в прочную систему.
Если исходить из модели плотной упаковки шаров, то можно определить атомный радиус элемента как половину расстояния между соседними атомами. Атомный радиус металла значительно больше его ионного радиуса в каком-либо соединении. Например, радиус иона натрия в кристаллах поваренной соли равен 0,98 А, а его атомный радиус в кристалле металлического натрия -- 1,89 А. Это говорит о том, что одноименно заряженные ионы металла в металлическом кристалле не могут сближаться так же тесно, как разноименные ионы в ионных соединениях.