Кристаллические структуры твердых тел

Автор работы: Пользователь скрыл имя, 25 Декабря 2014 в 13:58, реферат

Описание работы

Весь окружающий нас мир построен всего лишь из трех частиц: электро¬нов, протонов и нейтронов, и можно лишь поражаться тому многообразию веществ, которые из них возникают. В зависимости от состава, температуры, давления вещество может быть в газообразном, жидком или твердом состоянии. Рядом со сверхтвердым алмазом и жаропрочным асбестом соседствуют мягкий воск и легко воспламеняющаяся бумага. Наряду с прекрасно проводящими электрический ток медью и алюминием — изоляторы, такие как фарфор и слюда. Задача физики — понять первопричину всего этого многообразия окружающего нас мира, объяснить наблюдаемые феномено¬логические закономерности и уметь предсказывать свойства новых веществ и соединений.

Содержание работы

Введение . Роль, предмет и задачи физики твердого тела.
1.1. Кристаллические и аморфные тела.
1.2. Типы кристаллических решеток.
1.3. Кристаллографические обозначения (индексы Миллера - для узлов, направлений и плоскостей).
1.4. Ближний и дальний порядок в кристаллических веществах. Жидкие кристаллы.
1.5. Связь структуры с физическими свойствами веществ. Анизотропия кристаллов. Полиморфизм.
1.6. Упругое рассеяние рентгеновских лучей и нейтронов в кристаллах
1.7. Дефекты кристаллов.

Файлы: 1 файл

Кристаллические структуры твердых тел.rtf

— 4.96 Мб (Скачать файл)

Если предположить, что ионы металла имеют сферическую форму, то можно полагать, что структура таких кристаллов должна соответствовать плотной упаковке шаров одинакового размера -- гранецентрированному или объемно центрированному кубу, либо гексагональной решетке. Ближе всего к идеальной плотноупаковашюй гексагональной решетке подходит решетка магния. Молекулярные кристаллы. В узлах кристаллической решетки таких кристаллов находятся устойчивые молекулы, которые сохраняют индивидуальность не только в газообразной, но и в жидкой и твердой фазах (На, N2, Cfo, Bra, CH, CC>2, H2O}. Молекулы удерживаются в узлах решетки довольно слабыми вандерваальсовскими силами, природа которых сводится к взаимодействию между молекулярными диполями.

Различают три вида взаимодействия молекул, связанных силами Ван-дер-Ваал ьса.

1. Если молекулы данного вещества являются электрическими диполями, то силы электростатического взаимодействия между ними будут стремиться расположить молекулы в определенном порядке, которому соответствует минимум потенциальной энергии. Такой тип взаимодействия полярных молекул, зависящий от их ориентации, называется ориентационным.

2. Неполярные молекулы некоторых веществ обладают высокой поляризуемостью, поэтому под влиянием внешнего электрического поля (например, при приближении полярной молекулы) у таких молекул возникает наведенный (индуцированный) электрический момент. При сближении такие индуцированные диполи будут взаимодействовать друг с другом аналогично взаимодействию жестких диполей. Такое взаимодействие называют индукционным или поляризационным.

3. Возможен и так называемый дисперсионный вид взаимодействия. Это динамическое по своей природе взаимодействие является результатом того, что атом (молекула) обладает вследствие движения электронов переменным по величине и направлению дипольным моментом, равным произведению заряда электрона на радиус его орбиты. Энергетически оказывается более выгодной такая конфигурация соседних атомов, когда мгновенные значения дипольных моментов соседних атомов совпадают по направлению, что приводит к возникновению притяжения между ними.

Силы Ван-дер-Ваальса являются более короткодействующими, чем ку-лоновские силы. Кулоновские силы пропорциональны г , а вандервааль-ские -- ~ г~6. Эта зависимость легко получается из рассмотрения поляризационного взаимодействия, когда статический диполь с моментом р] наводит дипольный момент р2 = 2ар|/т-3. Так как pi || р2, то потенциальная энергия равна

U(г) = -2Р1р2/г3 - 4ар?/г6. (7.2)

Силы Ван-дер-Ваальса всегда слабы, поэтому молекулярные связи четко проявляются лишь в тех случаях, когда они возникают между нейтральными атомами или молекулами. Многие органические соединения (парафиновые цепи и жирные кислоты) образуют молекулярные кристаллы.

Одним из видов межмолекулярного взаимодействия является и водородная связь. Водородная связь между молекулами осуществляется атомом водорода, который, будучи химически связан с одной молекулой (например, через гидроксил), одновременно взаимодействует с атомом кислорода другой молекулы. Соединения с водородной связью обладают тенденцией к полимеризации. Существенную роль водородная связь играет во взаимодействии молекул воды, побуждая их ассоциироваться в группы из двух, четырех или восьми молекул, что обусловливает аномальные физические   Конечно, классификация кристаллов по типам связи достаточно условна, ибо в ряде случаев трудно отнести с определенностью кристаллы лишь к тому или иному классу. Но, тем не менее, приближенная классификация оказывается во многих случаях очень полезна, так как она позволяет выявить физическую природу сил, а значит и свойства образующихся структур.

7.4. Жидкие кристаллы

Большинство веществ может находиться только в трех агрегатных состояниях: твердом, жидком или газообразном. Однако некоторые органические вещества, обладающие сложными молекулами, могут образовывать четвертое, жидкокристаллическое. Как следует из самого названия, речь идет о специфическом агрегатном состоянии вещества, в котором оно проявляет одновременно свойства кристалла и жидкости. Оказывается, что при плавлении кристаллов этих веществ образуется жидкокристаллическая фаза, отличающаяся от обычных жидкостей. Эта фаза существует в интервале от температуры плавления до некоторой более высокой температуры, при нагреве до которой жидкий кристалл переходит в обычную жидкость.

Первым, кто обнаружил жидкие кристаллы, т. е. понял, что это самостоятельное агрегатное состояние вещества, был австрийский ученый, ботаник Рейнитцер. Исследуя новое синтезированное им вещество холестерилбензо-ат, он в 1888 г. обнаружил, что при нагреве до температуры 145 °С кристаллы этого вещества плавятся, образуя мутную, сильно рассеивающую свет жидкость. Затем по достижении температуры 179 °С жидкость становится прозрачной, т. е. начинает себя вести в оптическом отношении как обычная жидкость, например вода. Неожиданные свойства холестерилбензоат обнаруживал в мутной фазе. Рассматривая его под поляризационным микроскопом, Рейнитцер обнаружил, что в этой фазе он обладает двулучепреломлением. Это означает, что показатель преломления этой фазы зависит от поляризации света. Но явление двупреломлсния -- это типично кристаллический эффект, и в изотропной жидкости он не должен наблюдаться.

Более детальные исследования, к которым Рейнитцер привлек известного физика Лемана, показали, что наблюдаемый эффект не может быть обусловлен двухфазностью этого состояния, т. е. мутная фаза полностью однородна, она не является жидкостью, в которой содержатся кристаллиты. Это фазовое состояние и было названо Лсманом жидкокристаллическим.

Подобно обычным жидкостям, жидкие кристаллы текучи и принимают форму сосуда, в котором помещены. А с другой стороны, образующие их молекулы упорядочены в пространстве. Правда, это упорядочение не такое полное, как в обычных кристаллах. Пространственная ориентация молекул жидких кристаллов состоит в том, например, что все длинные оси молекул одинаково ориентированы. Для характеристики ориентационного порядка вводится вектор единичной длины L, называемый директором, направление которого совпадает с направлением усредненной ориентации длинных осей молекул. Кроме того, вводится еще одна величина, параметр порядка 5, который характеризует степень ориентационного упорядочения молекул. Параметр порядка определяется следующим образом:

5=(3/2)(со?ё-1/3), (7.3)

где 9 -- угол между направлениями директора и мгновенным направлением длинной оси молекул, a cos2 в означает среднее по времени значение cos2 в.

 

ГЛ. 7,    Кристаллические структуры твердых тел

Из этой формулы ясно, что параметр 5" может принимать значения от О до 1. Значение 5=1 соответствует полной ориентациопной упорядоченности, a S -- 0 означает полный ориентационный беспорядок и соответствует переходу жидкого кристалла в изотропную жидкость.

В зависимости от характера упорядочения осей молекул жидкие кристаллы разделяются на три разновидности: нематические, смектические и хо-лестерические.

Нематики. Чтобы схематично описать устройство нематиков, удобно молекулы, образующие его, представить в виде палочек. Для такой идеализации есть физические основания. Молекулы жидких кристаллов представляют собой типичные для многих органических веществ образования со сравнительно большим молекулярным весом, порядка сотни, сильно вытянутые в одном направлении. Структура типичного нематика приведена на рис. 7.9 а. При наблюдении нематика через микроскоп видна причудлиэая совокупность пересекающихся линий, или, как их называют, нитей, представляющих собой границы раздела между однодоменными областями. Отсюда и произошло название «нематик» -- по-гречески «нема» означает «нить».

t   \

Рис. 7.9

При введенной нами идеализации структуру нематика следует представлять как «жидкость одинаково ориентированных палочек». Это означает, что центры тяжести расположены и движутся хаотически, как в жидкости, а ориентация всех осей при этом остается одинаковой и неизменной.

На самом деле, конечно, молекулы нематика совершают не только случайные поступательные движения, но также и ориентациониые колебания. Поэтому палочки задают преимущественную, усредненную ориентацию. Амплитуда ориентациоиных колебаний молекул зависит от близости жидкого кристалла к точке фазового перехода в обычную жидкость, возрастая по мере приближения температуры нематика к температуре фазового перехода. В точке фазового перехода ориентационное упорядочение молекул исчезает, и ориентация молекул становится полностью хаотической.

Смектики. В смектических жидких кристаллах степень упорядочения молекул выше, чем в нематиках. Схематически структура смектика выглядит так, как это показано на рис. 7.9 б. В смектиках, помимо ориентационной упорядоченности молекул, аналогичной случаю нематиков, существует частичное упорядочение центров тяжести молекул -- молекулы смектика организованы в слои, расстояния между которыми фиксированы, что и дает упорядочение слоев. Ориентация молекул в слое может быть как перпендикулярна плоскости слоя, так и направлена под некоторым углом к нему.

Общим для всех смектиков, независимо от описанных выше деталей их структуры, является слабое взаимодействие молекул, принадлежащих к различным слоям, по сравнению с взаимодействием молекул внутри одного слоя. По этой причине слои легко скользят друг относительно друга и смектики на ощупь мылоподобны. Отсюда и их название, в основе которого лежит греческое слово «смегма», что значит мыло. Аналогично нематикам, смектики обладают двулучепреломлением света. Если не созданы специальные условия, образец смектического жидкого кристалла, так же как и нематик, представляет собой совокупность малых областей (доменов) с одинаковым упорядочением молекул только в их пределах.

Холестерики. Холестершш устроены более сложно, чем нематики и смектики. Локально холестерический жидкий кристалл имеет такую же структуру, что и нематик. Это означает, что в малом объеме упорядочение молекул холестерика можно характеризовать директором и параметром порядка. Отличия холестерика от нематика проявляются в больших по сравнению с молекулярными размерами масштабах. Оказывается, что направление директора в холестерике но остается неизменным по его объему даже для однодоменного образца. Существует такое направление, называемое хо-лестерической осью (на рис. 7.9 в это ось г), вдоль которого регулярным образом изменяется ориентация директора. Директор перпендикулярен этой оси и вращается вокруг нее, причем угол поворота директора tp линейно зависит от расстояния z вдоль холестерической оси и может быть представлен в виде

V=~z. (7.4)

Расстояние р вдоль холестерической оси, на котором директор поворачивается на 360°, носит название шага холестерической спирали. Если провести воображаемые плоскости, перпендикулярные холестерической оси (как это сделано на рис. 7.9 б), то для каждой плоскости направление директора во всех ее точках оказывается фиксированным, однако изменяющимся от плоскости к плоскости.

Следует отметить, что мы рассмотрели лишь жидкие кристаллы, молекулы которых имеют удлиненную форму. Реально для жидких кристаллов существенным моментом является лишь анизотропия молекул, и поэтому жидкокристаллическую фазу могут образовывать и молекулы сплюснутой формы (дискообразные). Существует и другой класс жидких кристаллов -- лиотропные, к которым относятся, в частности, клеточные мембраны, играющие большую роль в биологии. Мы ограничимся только подробно разобранными выше термотропными жидкими кристаллами, в которых фазовый переход в жидкокристаллическое состояние происходит при изменении температуры вещества.

Из всего многообразия физических свойств жидких кристаллов мы остановимся лишь на их оптических свойствах, которые определяют необычайно широкое использование жидких кристаллов для отображения информации. Прежде всего рассмотрим вопрос о том, как получить жидкий монокристалл, например, нематик. Стабилизировать структуру жидкого кристалла можно, например, с помощью поверхностных сил, задающих определенную ориентацию молекул на поверхностях, ограничивающих нематик, который, в свою очередь, индуцирует за счет межмолекулярных взаимодействии соответствующую ориентацию молекул в объеме.

Практика показывает, что полной однородности структуры можно добиться, поместив нематик между двумя пластинами, зазор между которыми не более 10-100 мкм. Пластины, ограничивающие нематик, как правило, изготавливают из прозрачных материалов: стекла, полимеров, токопроводящего прозрачного соединения окиси олова (SnO2) и т. д. Обработка поверхности пластин в простейшем случае состоит в их направленной полировке.

Можно создавать ориентацию молекул и внешними полями, как правило, электрическими, ориентирующими молекулы однородным образом во всем объеме. Решающую роль в электрооптическом поведении жидких кристаллов играет анизотропия их диэлектрических свойств. Во внешнем поле жидкий кристалл стремится ориентироваться так, чтобы направление, в котором его диэлектрическая проницаемость Ј максимальна, совпадало с направлением поля; при этом L || Е или L _L E в зависимости от знака диэлектрической проницаемости е вещества. С переориентацией директора связано изменение направления оптической оси, т. е. практически всех оптических свойств образца -- поглощения света, вращения плоскости поляризации, двойного лучепреломления и т. д. Если, например, в исходном состоянии вектор L параллелен прозрачным электродам и Ј > 0, то при некотором критическом значении поля Е _l_ L произойдет переориентация L. Этот переход называется переходом Фредерикса.

Изменение ориентации L в нематическом жидком кристалле требует напряжения порядка одного вольта и мощностей порядка микроватт, что можно обеспечить непосредственной подачей сигналов с интегральных схем без дополнительного усиления. Поэтому жидкие кристаллы широко используются в малогабаритных электронных часах, калькуляторах, индикаторах, в плоских экранах портативных телевизоров и компьютеров. Для отображения цифровой информации в жидкокристаллических ячейках либо электроды выполняются в виде нужных цифр, либо нужная цифра воспроизводится путем «включения» определенной комбинации ячеек, выполненных в виде полосок.

Если в нематике внешнее поле приводит к сравнительно простой переориентации молекул, то у холестерина наложение поля, перпендикулярного холестерической оси, приводит к увеличению шага спирали, угол поворота директора перестает быть линейной функцией координаты, а при достижении некоторого критического значения поля холестерическая спираль полностью раскручивается. Зависимость шага спирали холестерических кристаллов от температуры позволяет использовать пленки этих веществ для наблюдения распределения температуры на поверхности различных тел, при медицинской диагностике, визуализации теплового излучения.

Информация о работе Кристаллические структуры твердых тел