Лекции по "Электрическим сетям"

Автор работы: Пользователь скрыл имя, 15 Декабря 2013 в 19:55, курс лекций

Описание работы

Электроснабжение промышленных, коммунальных и других потребителей производится от электрических станций, вырабатывающих электроэнергию. Электрические станции могут находиться вблизи потребителей либо удалены на значительные расстояния. В обоих случаях передача и распределение электрической энергии осуществляется по проводам электрических линий. Накапливать электрическую энергию в больших количествах сегодня практически нельзя, поэтому с помощью современных автоматических средств управления постоянно поддерживается равновесие между вырабатываемой и потребляемой электрической энергией.

Файлы: 1 файл

Vse_lektsii_po_PiREE.doc

— 4.44 Мб (Скачать файл)

Значительное влияние на активное сопротивление оказывает температура  материала проводников, которая  зависит от  температуры окружающей среды и тока нагрузки.

Погонные (удельные) реактивные (индуктивные) сопротивления фаз линий в общем случае получаются разными. Они определяются взаимным расположением фаз и геометрическими параметрами. При расчетах симметрических рабочих режимов пользуются средними значениями (независимо от транспозиции фаз линии).

Схемы замещения ЛЭП

Линия электрической сети теоретически рассматривается состоящей из бесконечно большого количества равномерно распределенных вдоль нее активных и реактивных сопротивлений и проводимостей.

Точный учет влияния распределенных сопротивлений и проводимостей сложен и необходим при расчетах очень длинных линий, которые в этом курсе не рассматривается.

На практике ограничиваются упрощенными  методами расчета, рассматривая линию  с сосредоточенными активными и  реактивными сопротивлениями и проводимостями.

Для проведения расчетов принимают  упрощенные схемы замещения линии, а именно: П-образную схему замещения, состоящую из последовательно соединенных активного (rл) и реактивного (xл) сопротивлений. Активная (gл) и реактивная (емкостная) (bл) проводимости включены в начале и конце линии по 1/2.

П-образная схема замещения  характерна для воздушных ЛЭП  напряжением  
110-220 кВ длиной до 300-400 км.

П – образная схема замещения  ЛЭП напряжением 110-220 кВ длиной до 300-400 км.

Активное сопротивление определяется по формуле: ,

где rо – удельное сопротивление Ом/км при tо провода + 20о,

 l – длина линии, км

Активное сопротивление  проводов и кабелей при частоте 50 Гц обычно примерно равно омическому сопротивлению. Не учитывается явление поверхностного эффекта.

Удельное активное сопротивление rо для сталеалюминиевых и других проводов из цветных металлов определяется по таблицам в зависимости от поперечного сечения.

Для стальных проводов нельзя пренебрегать поверхностным эффектом. Для них rо зависит от сечения и протекающего тока и находится по таблицам.

При температуре провода, отличной от 20о С сопротивление линии уточняется по соответствующим формулам.

Реактивное сопротивление определяется: ,

где xо - удельное реактивное сопротивление Ом/км. Удельные индуктивные сопротивления фаз ВЛ в общем случае различны (об этом уже говорилось).

При расчетах симметричных режимов  используют средние значения xо : (1),

где rпр - радиус провода, см;

Дср - среднегеометрическое расстояние между фазами, см, определяется следующим выражением:

,

Где Дав, Двс, Дса - расстояния между проводами соответствующих фаз А, В, С.

Например, при расположении фаз  по углам равностороннего треугольника со стороной Д, среднегеометрическое расстояние равно Д.

Даввсас

При расположении проводов ЛЭП в  горизонтальном положении:

Даввс

Дас=2Д

При размещении параллельных цепей  на двухцепных опорах потокосцепление  каждого фазного провода определяется токами обеих цепей. Изменение Х0 из-за влияния второй цепи зависит от расстояния между цепями. Отличие Х0 одной цепи при учете и без учета влияния второй цепи не превышает 5-6% и не учитывается в практических  расчетах.

В линиях электропередач при (иногда и при напряжении 110 и  
220 кВ) провод каждой фазы расщепляется на несколько проводов. Это соответствует увеличению эквивалентного радиуса. В выражении для Х0:

  (1)

вместо rпр используется

,

где rэк - эквивалентный радиус провода, см;

аср -  среднегеометрическое расстояние между проводами одной фазы, см;

nф- число проводов в одной фазе.

Для линии с расщепленными  проводами последнее слагаемое  в формуле 1 уменьшается в nф раз, т.е. имеет вид .

Удельное активное сопротивление  фазы линии с расщепленными проводами  определяются так : r0= r0пр / nф ,

Где r0пр - удельное сопротивление провода данного сечения, определенное по справочным таблицам. Для сталеалюминиевых проводов Х0 определяется по справочным таблицам, в зависимости от сечения, для стальных в зависимости от сечения и тока.

Активная проводимость (gл) линии соответствует двум видам потерь активной мощности:

1) от тока утечки через изоляторы;

2) потери на корону.

Токи утечки через изоляторы  малы и потерями в изоляторах можно  пренебречь. В воздушных линиях (ВЛ) напряжением 110 кВ и выше при определенных условиях напряженность электрического поля на поверхности провода возрастает и становится больше критической. Воздух вокруг провода интенсивно ионизируется, образуя свечение - корону. Короне соответствуют потери активной мощности. Наиболее радикальными средствами уменьшения потерь мощности на корону является увеличение диаметра провода, для линий высокого напряжения (330 кВ и выше) использование расщепления проводов. Иногда можно использовать так называемый системный способ уменьшения потерь мощности на корону. Диспетчер уменьшает напряжение в линии до определенной величины.

В связи с этим задаются наименьшие допустимые сечения по короне:

110 кВ - 70 мм2 (сейчас рекомендуется использовать сечение 95 мм2);

150 кВ - 120 мм2;

220 кВ - 240 мм2.

Коронирование проводов приводит: к снижению КПД; к усиленному окислению поверхности проводов; к появлению радиопомех.

При расчете установившихся режимов  сетей до 220 кВ активная проводимость практически не учитывается.

В сетях с  при определении потерь мощности при расчете оптимальных режимов, необходимо учитывать потери на корону.

Емкостная проводимость (вл) линии обусловлена емкостями между проводами разных фаз и емкостью провод - земля и определяется следующим образом:

,

где в0 - удельная емкостная проводимость См/км, которая может быть определена по справочным таблицам или по следующей формуле:

(2),

где Дср - среднегеометрическое расстояние между проводами фаз; rпр - радиус провода.

 

Для большинства расчетов в сетях 110-220 кВ ЛЭП (линия электропередачи) представляется более простой схемой замещения:

Иногда в схеме замещения вместо емкостной проводимости   учитывается реактивная мощность, генерируемая емкостью линий (зарядная мощность).

Половина емкостной мощности линии, МВАр, равна:

    (*),

где:

Uф и U – соответственно фазное и междуфазное (линейное) напряжения, кВ;

Iс - емкостный ток на землю

Из выражения для Qс (*) следует, что мощность Qс, генерируемая линий сильно зависит от напряжения. Чем выше напряжение, тем больше емкостная мощность.

Для воздушных линий напряжением 35 кВ и ниже емкостную мощность (Qс) можно не учитывать, тогда схема замещения примет следующий вид:


 

 

Для линий с  при длине > 300-400 км учитывают равномерное распределение сопротивлений и проводимостей вдоль линии.

Кабельные линии электропередачи представляют такой же П-образной схемой замещения как и ВЛ.

Удельные активные и реактивные сопротивления r0, х0 определяют по справочным таблицам, так же как и для ВЛ.

Из выражения для х0 и в0

видно, что х0 уменьшается, а в0 растет при сближении разных проводов.

Для кабельных линий расстояние между проводами фаз значительно  меньше, чем для ВЛ и Х0 очень мало.

При расчетах режимов КЛ (кабельных линий) напряжением 10кВ и ниже можно учитывать только активное сопротивление.


 

 

Емкостный ток и Qс в кабельных линиях больше чем в ВЛ. В кабельных линиях (КЛ) высокого напряжения учитывают Qс, причем удельную емкостную мощность Qc0 кВАр/км можно определить по таблицам в справочниках.

Активную проводимость (gл )учитывают для кабелей 110 кВ и выше.

Удельные параметры кабелей х0, а также Qс0 приведенные в справочных таблицах ориентировочны, более точно их можно определить по заводским характеристикам кабелей.

Характерные соотношения  между параметрами линий

Активное сопротивление  проводов и кабелей определяется материалом токоведущих жил и  их сечениями.

С изменением сечения проводов и  кабелей значительно изменяются их активные сопротивления.

Активное сопротивление обратно  пропорционально сечению провода  или кабеля.

Магнитное поле возникающее вокруг и внутри проводов ВЛ и жил кабелей  определяет их  индуктивное сопротивление. Индуктивное сопротивление зависит  от взаимного расположения проводов.

Индуктивные сопротивления фазных проводов ВЛ будут одинаковыми, если они расположены по вершинам равностороннего  треугольника, и будут отличаться друг от друга, если фазные провода  подвешиваются в горизонтальной плоскости. Чтобы избежать нежелательной несимметрии применяют транспозицию проводов, которая заключается в том, что в нескольких точках линии фазные провода на опорах меняются местами. При этом каждый провод поочередно занимает все три возможные положения при примерно одинаковой протяженности.

Благодаря транспозиции, эдс, наводимые  в фазных проводах выравниваются  и индуктивные сопротивления  становятся одинаковыми.

Для иллюстрации приведем пример индуктивных  сопротивлений трех напряжений для  средних сечений проводов  и  расстояний между проводами:

1) линия  6,10 кВ           х0=0,362 Ом/км;

2) линия   35   кВ           х0=0,401 Ом/км;

3) линия   110 кВ            х0=0,433 Ом/км.

При выполнении ВЛ одиночными (нерасщепленными  проводами) их индуктивное сопротивление:  х0»0,4 Ом/км.

Индуктивное сопротивление расщепленных проводов, вследствие увеличения эквивалентного радиуса, будет меньше и при расщеплении на три провода будет х0»0,29 Ом/км.

Малая зависимость от конструктивных характеристик ВЛ также присуща  и емкостной проводимости.

Среднее значение проводимости для ВЛ , выполненной одиночными проводами

во ср»2,75´10-6 См/км.

Для линий с расщепленными проводами  емкостная проводимость увеличивается  и при расщеплении на три провода:  в0»3,8´10-6См/км.

Для  линий 110кВ при характерной  для них протяженности зарядная мощность            QC»10% от передаваемой;

Для  линий 220кВ     30% от передаваемой;

Для линий 500кВ может быть соизмерима с передаваемой активной мощностью.

Для линий 35кВ и более низким направлением зарядную мощность можно не учитывать.

Режимы и параметры  системы и сети

Состояние системы в любой момент времени или на некотором интервале  времени называется режимом системы.

Режим определяется показателями, которые  называются параметрами режима к их числу относятся:

1)частота,

2)активная и реактивная мощность в элементах системы,

3)напряжение в различных точках  сети у потребителей,

4)величины токов,

5)величины углов расхождения  векторов ЭДС и напряжения.

Различают три основных вида режимов  электроэнергетических систем:

1. Нормальный установившейся режим, применительно к которому проектируется элкктрическая сеть и определяются ее технико–экономические характеристики;

2. Послеаварийный установившийся режим, наступающий после аварийного отключения какого – либо элемента сети или ряда элементов (в этом режиме система и соответственно сеть могут работать с несколько ухудшенными технико– экономическими характеристиками);

3. Переходный режим, во время которого система переходит из одного состояния к другому.

Любой режим состоит из множества  различных процессов.

Различают параметры режима и параметры  сети.

  Параметры режима электрической сети связаны между собой определенными зависимостями, в которые входят некоторые коэффициенты, зависящие от физических свойств элементов сети, от способа соединения этих элементов между собой, а также от некоторых допущений расчетного характера.

К ним относятся полное сопротивление, активное и реактивное сопротивление, проводимости элементов, собственная  и взаимная проводимости, коэффициент  трансформации, коэффициент усиления.

Например, ток на участке ЛЭП  определяется зависимостью: I= ; Здесь U1,U2,I – параметры режима; ZЛ – сопротивление данного участка системы (линии), является одним из параметров сети.

Информация о работе Лекции по "Электрическим сетям"