Физико-химическое свойство белков. Методы обнаружения и выделения их

Автор работы: Пользователь скрыл имя, 11 Ноября 2013 в 16:34, реферат

Описание работы

Важное место в биохимических исследованиях занимает выделение индивидуальных белков из органов и тканей. Очищенные индивидуальные белки нужны для изучения их первичной структуры, получения кристаллов белков с целью исследования их пространственной структуры методом рентгеноструктурного анализа, установления взаимосвязи между первичной, пространственной структурой белка и его функцией.

Содержание работы

Введение
Физико-химическое свойство белков
Методы выделения и очистки белков
Типы связей между аминокислотами в молекуле белка
Методы определения структуры белка.
Список литературы.

Файлы: 1 файл

реферат по билхимии.doc

— 1.84 Мб (Скачать файл)

Разделение смеси белков методом гель-фильтрации.

Кювета, заполненная буферным раствором с разделёнными белковыми фракциями.

 

Электрофорез белков

Метод основан на том, что при определённом значении рН и ионной силы раствора белки двигаются в электрическом поле со скоростью, пропорциональной их суммарному заряду. Белки, имеющие суммарный отрицательный заряд, двигаются к аноду (+), а положительно заряженные белки - к катоду (-).

Электрофорез проводят на различных носителях: бумаге, крахмальном геле, полиакриламидном геле и др. В отличие от электрофореза на бумаге, где скорость движения белков пропорциональна только их суммарному заряду, в полиакриламидном геле скорость движения белков пропорциональна их молекулярным массам.

Разрешающая способность  электрофореза в полиакриламидном геле выше, чем на бумаге.

Так, при электрофорезе белков сыворотки крови человека на бумаге обнаруживают только 5 главных фракций: альбумины, αглобулины, α2-глобулины, β-глобулины и γ-глобулины (рис. 1-57). Электрофорез тех же белков в полиакриламидном геле позволяет получить до 18 различных фракций. Для обнаружения белковых фракций полоски бумаги или столбики геля обрабатывают красителем (чаще всего бромфеноловым синим или амидовым чёрным). Окрашенный комплекс белков с красителем выявляет расположение различных фракций на носителе.

Ионообменная хроматография

Так же как и электрофорез, метод основан на разделении белков, различающихся суммарным зарядом  при определённых значениях рН и  ионной силы раствора. При пропускании раствора белков через хроматографическую колонку, заполненную твёрдым пористым заряженным материалом, часть белков задерживается на нём в результате электростатических взаимодействий.

В качестве неподвижной  фазы используют ионообменники - полимерные органические вещества, содержащие заряженные функциональные группы.

Различают положительно заряженные анионообменники, среди  которых наиболее часто используют диэтиламиноэтилцеллюлозу (ДЭАЭ-целлюлозу), содержащую катионные группы, и отрицательно заряженные катионообменники, например карбоксиметилцеллюлозу (КМ-цел-люлозу), содержащую анионные группы.

Выбор ионообменника определяется зарядом выделяемого белка. Так, для выделения отрицательно

заряженного белка используют анионообменник. При пропускании раствора белка  через колонку прочность связывания белка с анионообменником зависит от количества отрицательно заряженных карбоксильных групп в молекуле. Белки, адсорбированн2ые на анионообменнике, можно смыть (элюировать) буферными растворами с различной концентрацией соли, чаще всего NaCI, и разными значениями рН. Ионы хлора связываются с положительно заряженными функциональными группами анионообменника и вытесняют карбоксильные группы белков. При низких концентрациях соли элюируются белки, слабо связанные с анионообменником. Постепенное увеличение концентрации соли или изменение рН, что меняет заряд белковой молекулы, приводит к выделению белковых фракций, в одной из которых находится искомый белок.

Аффинная хроматография, или хроматография по сродству

Это наиболее специфичный  метод выделения индивидуальных белков, основанный на избирательном взаимодействии белков с лигандами, прикреплёнными (иммобилизированными) к твёрдому носителю. В качестве лиганда может быть использован субстрат или кофермент, если выделяют какой-либо фермент, антигены для выделения антител и т.д. Через колонку, заполненную иммобилизованным лигандом, пропускают раствор, содержащий смесь белков. К ли-ганду присоединяется только белок, специфично взаимодействующий с ним; все остальные белки выходят с элюатом (рис. 1-58). Белок, адсорбированный на колонке, можно снять, промыв её раствором с изменённым значением рН или изменённой ионной силой. В некоторых случаях используют раствор детергента, разрывающий гидрофобные связи между белком и лигандом.

Аффинная хроматография  отличается высокой избирательностью и помогает очистить выделяемый белок в тысячи раз.

3. Очистка белков от низкомолекулярных 
примесей

Для удаления низкомолекулярных соединений, в частности сульфата аммония  после высаливания, применяют диализ. Метод основан на том, что через полупроницаемую мембрану,

пропускающую низкомолекулярные  вещества, не проходят белки, имеющие  более высокую молекулярную массу. В стакан большой ёмкости (около 1 л) с буферным раствором помещают полупроницаемый мешочек, заполненный раствором белка с солью.

Скорость выхода соли из мешочка в буферный раствор  пропорциональна градиенту его  концентраций по обе стороны от мембраны. По мере выхода соли из мешочка буферный раствор в стакане меняют.

Для очистки белков от низкомолекулярных  примесей используют также метод  гель-фильтрации (см. выше).

Для определения частоты (гомогенности) выделенного белка применяют  методы с высокой разрешающей  способностью, например электрофорез в полиакриламидном геле, высокоэффективная хроматография высокого давления. От чистоты лекарственного белкового препарата зависят его биологическая эффективность и аллергенность (т.е. способность вызывать аллергические реакции). Чем качественнее очищен препарат, тем меньше вероятность осложнений при его применении.

 

 

 

3.Типы связей между  аминокислотами в молекуле белка

2 группы:

    1. КОВАЛЕНТНЫЕ СВЯЗИ  - обычные прочные химические  связи.

а) пептидная связь

б) дисульфидная связь

    2. НЕКОВАЛЕНТНЫЕ  (СЛАБЫЕ) ТИПЫ СВЯЗЕЙ - физико-химические  взаимодействия  родственных структур. В десятки раз слабее обычной  химической связи. Очень чувствительны  к физико-химическим условиям  среды. Они неспецифичны, то есть  соединяются друг с другом  не строго определенные химические группировки, а самые  разнообразные химические группы, но отвечающие определенным требованиям.

    а) Водородная связь

    б) Ионная связь

    в) Гидрофобное взаимодействие

 

 

 

ПЕПТИДНАЯ СВЯЗЬ.

Формируется за  счет  COOH-группы  одной  аминокислоты и NH2-группы соседней аминокислоты. В названии пептида окончания названий всех аминокислот, кроме последней, находящейся на «С» - конце молекулы меняются на «ил»

Тетрапептид: валил-аспарагил-лизил-серин



 

ПЕПТИДНАЯ СВЯЗЬ формируется ТОЛЬКО ЗА СЧЕТ АЛЬФА-АМИНОГРУППЫ И СОСЕДНЕЙ  COOH-ГРУППЫ ОБЩЕГО ДЛЯ ВСЕХ АМИНОКИСЛОТ ФРАГМЕНТА МОЛЕКУЛЫ!!! Если  карбоксильные и аминогруппы входят в состав радикала, то они никогда(!) не участвуют в формировании пептидной связи в молекуле белка.

Любой белок - это длинная неразветвленная полипептидная цепь, содержащая  десятки, сотни, а иногда более тысячи аминокислотных остатков. Но какой бы длины ни была полипептидная цепь, всегда в основе ее - стержень молекулы, абсолютно  одинаковый у всех белков. Каждая полипептидная цепь имеет N-конец, на котором находится свободная концевая аминогруппа и С-конец, образованный концевой свободной карбоксильной группой. На этом стержне сидят как боковые веточки радикалы аминокислот. Числом, соотношением и чередованием этих радикалов один  белок  отличается  от другого. Сама пептидная связь является частично двойной в силу лактим-лактамной таутомерии. Поэтому вокруг нее невозможно вращение, а сама она по прочности в полтора раза превосходит обычную ковалентную связь. На рисунке видно, что из каждых трех ковалентных связей в стержне молекулы пептида или белка две являются простыми и допускают вращение, поэтому стержень (вся полипептидная цепь) может изгибаться в пространстве.

Хотя пептидная связь довольно прочная, ее сравнительно легко можно разрушить химическим путем – кипячением белка в крепком растворе кислоты или щелочи в течении 1-3 суток.

К ковалентным связям в молекуле белка помимо пептидной, относится  также ДИСУЛЬФИДНАЯ СВЯЗЬ.

Цистеин - аминокислота, которая в радикале имеет SH-группу, за счет которой и образуются дисульфидные связи.



Дисульфидная связь - это ковалентная связь. Однако биологически она гораздо  менее устойчива, чем пептидная связь. Это  объясняется  тем, что в организме интенсивно протекают окислительно-восстановительные процессы. Дисульфидная связь может возникать между разными  участками одной и той же полипептидной цепи, тогда она удерживает эту цепь в изогнутом состоянии. Если дисульфидная связь возникает  между двумя полипептидами, то она объединяет их в одну молекулу.

СЛАБЫЕ ТИПЫ СВЯЗЕЙ

В десятки раз слабее ковалентных связей. Это не определенные типы связей, а неспецифическое взаимодействие, которое возникает между разными  химическими группировками, имеющими высокое сродство друг к другу (сродство – это способность к взаимодействию). Например: противоположно заряженные радикалы.

Таким образом, слабые типы связей - это физико-химические взаимодействия. Поэтому они очень чувствительны  к изменениям условий среды (температуры, pH среды, ионной силы раствора и так далее).

ВОДОРОДНАЯ  СВЯЗЬ - это связь, возникающая между двумя электроотрицательными атомами за счет атома водорода, который соединен с одним из  электроотрицательных атомов ковалентно (см. рисунок).



Водородная связь примерно в 10 раз слабее, чем ковалентная. Если водородные связи повторяются  многократно, то они   удерживают полипептидные цепочки с высокой  прочностью.   Водородные связи  очень чувствительны к условиям внешней среды и присутствию в ней веществ, которые сами способны  образовывать такие связи (например, мочевина).

ИОННАЯ СВЯЗЬ - возникает между положительно и отрицательно заряженными группировками (дополнительные карбоксильные и аминогруппы), которые встречаются в радикалах лизина, аргинина, гистидина, аспарагиновой и глутаминовой кислот.



ГИДРОФОБНОЕ ВЗАИМОДЕЙСТВИЕ - неспецифическое притяжение, возникающее в молекуле белка между радикалами гидрофобных аминокислот - вызывается силами Ван-дер-Ваальса и дополняется выталкивающей силой воды. Гидрофобное   взаимодействие ослабевает или разрывается в  присутствии различных органических растворителей и некоторых детергентов. Например, некоторые последствия действия этилового спирта  при проникновении его внутрь организма обусловлены тем, что под его влиянием   ослабляются гидрофобные взаимодействия в молекулах белков.

                                  

ПРОСТРАНСТВЕННАЯ ОРГАНИЗАЦИЯ  БЕЛКОВОЙ МОЛЕКУЛЫ

В основе каждого белка  лежит полипептидная цепь. Она  не просто вытянута в пространстве, а организована в трехмерную структуру. Поэтому существует понятие о 4-х уровнях пространственной организации белка, а именно - первичной, вторичной, третичной и четвертичной  структурах белковых молекул.

ПЕРВИЧНАЯ СТРУКТУРА

Первичная структура  белка - последовательность аминокислотных фрагментов, прочно (и в течение всего периода существования белка) соединенных пептидными связями. Существует период полужизни белковых молекул - для большинства белков около 2-х недель. Если произошел разрыв хотя бы одной пептидной связи, то  образуется уже другой белок.

ВТОРИЧНАЯ СТРУКТУРА

Вторичная структура - это пространственная организация стержня полипептидной цепи. Существуют 3 главнейших типа вторичной структуры:

1) Альфа-спираль - имеет определенные  характеристики: ширину, расстояние между  двумя  витками спирали. Для белков характерна правозакрученная спираль. В этой спирали на 10 витков приходится 36 аминокислотных остатков. У всех  пептидов, уложенных в такую спираль, эта спираль абсолютно одинакова. Фиксируется  альфа-спираль  с  помощью водородных связей  между NH-группами одного витка спирали и С=О группами соседнего   витка. Эти водородные связи расположены параллельно оси спирали и многократно повторяются, поэтому прочно удерживают   спиралеобразную структуру. Более  того, удерживают  в несколько напряженном состоянии (как сжатую пружину).

Бета-складчатая структура - или структура складчатого листа. Фиксируется также водородными связями между С=О и NH-группами. Фиксирует два участка полипептидной цепи. Эти цепи могут быть параллельны или антипараллельны. Если такие связи  образуются в пределах одного пептида, то они всегда антипараллельны, а если между разными полипептидами, то параллельны.

3) Нерегулярная структура - тип вторичной структуры, в котором расположение различных участков полипептидной цепи относительно друг друга не имеет регулярного (постоянного) характера, поэтому нерегулярные  структуры могут иметь различную конформацию.

ТРЕТИЧНАЯ СТРУКТУРА

Это трехмерная архитектура  полипептидной цепи – особое взаимное расположение в пространстве спиралеобразных, складчатых и нерегулярных    участков полипептидной цепи. У разных белков третичной структуры различна. В формировании третичной структуры участвуют дисульфидные связи и все слабые типы связей.

    Выделяют два  общих типа третичной структуры:

1) В фибриллярных белках (например, коллаген, эластин)  молекулы которых имеют вытянутую форму и обычно формируют волокнистые структуры тканей, третичная структура представлена либо тройной альфа-спиралью (например, в коллагене), либо бета-складчатыми структурами.

2) В глобулярных  белках, молекулы которых имеют форму шара или эллипса (латинское название: GLOBULA - шар), встречается сочетание всех трех типов  структур: всегда есть нерегулярные участки, есть бета-складчатые структуры и альфа-спирали.

Обычно в глобулярных  белках гидрофобные участки молекулы находятся в  глубине молекулы. Соединяясь между собой, гидрофобные  радикалы образуют  гидрофобные кластеры (центры). Формирование гидрофобного кластера вынуждает молекулу соответствующим образом изгибаться в пространстве. Обычно в молекуле  глобулярного белка бывает несколько гидрофобных кластеров в глубине молекулы.  Это является проявлением двойственности свойств белковой молекулы: на поверхности молекулы - гидрофильные группировки, поэтому молекула в целом - гидрофильная, а в глубине молекулы - спрятаны гидрофобные радикалы.

Информация о работе Физико-химическое свойство белков. Методы обнаружения и выделения их