Автор работы: Пользователь скрыл имя, 10 Декабря 2014 в 06:10, реферат
К элементам главной подгруппы V группы периодической системы относятся: азот, фосфор, мышьяк, сурьма, висмут. Эти элементы имеют электронную конфигурацию внешнего уровня: nS2nP3 и могут проявлять степени окисления от –3 до +5. В подгруппе сверху вниз происходит усиление металлических и восстановительных свойств и ослабление неметаллических. Азот и фосфор являются типичными неметаллами, мышьяк проявляет и металлические свойства, сурьма и висмут - типичные металлы
№ пор. |
Элемент |
Потенциал ионизации |
7 |
N |
14.48 |
15 |
P |
10.3 |
33 |
As |
9.96 |
51 |
Sb |
8.35 |
83 |
Bi |
7.25 |
Только с такими активными металлами, как литий, кальций, магний, Азот взаимодействует при нагревании до сравнительно невысоких температур. С большинством других элементов Азот реагирует при высокой температуре и в присутствии катализаторов. Хорошо изучены соединения Азота с кислородом N2O, NO, N2O3, NO2 и N2O5. Из них при непосредственном взаимодействии элементов (4000°С) образуется оксид NO, который при охлаждении легко окисляется далее до оксида (IV) NO2. В воздухе оксиды Азота образуются при атмосферных разрядах. Их можно получить также действием на смесь Азота с кислородом ионизирующих излучений. При растворении в воде азотистого N2O3 и азотного N2O5 ангидридов соответственно получаются азотистая кислота HNO2 и азотная кислота HNO3, образующие соли - нитриты и нитраты. С водородом Азот соединяется только при высокой температуре и в присутствии катализаторов, при этом образуется аммиак NH3. Кроме аммиака, известны и другие многочисленные соединения Азот с водородом, например гидразин H2N-NH2, диимид HN=NH, азотистоводородная кислота HN3(H-N=N≡N), октазон N8H14 и другие; большинство соединений Азота с водородом выделено только в виде органических производных. С галогенами Азот непосредственно не взаимодействует, поэтому все галогениды Азота получают только косвенным путем, например фтористый азот NF3 - при взаимодействии фтора с аммиаком. Как правило, галогениды Азота - малостойкие соединения (за исключением NF3); более устойчивы оксигалогениды Азота - NOF, NOCl, NOBr, NO2F и NO2Cl. С серой также не происходит непосредственного соединения Азот; азотистая сера N4S4получается в результате реакции жидкой серы с аммиаком. При взаимодействии раскаленного кокса с Азот образуется циан (CN)2. Нагреванием Азота с ацетиленом С2Н2 до 1500°С может быть получен цианистый водород HCN. Взаимодействие Азота с металлами при высоких температурах приводит к образованию нитридов (например, Mg3N2).
При действии на обычный Азот электрических разрядов [давление 130-270 н/м2 (1-2 мм рт. cт.)] или при разложении нитридов В, Ti, Mg и Са, а также при электрических разрядах в воздухе может образоваться активный Азот, представляющий собой смесь молекул и атомов Азота, обладающих повышенным запасом энергии. В отличие от молекулярного, активный Азот весьма энергично взаимодействует с кислородом, водородом, парами серы, фосфором и некоторыми металлами.
Азот входит в состав очень многих важнейших органических соединений (амины, аминокислоты, нитросоединения и других).
Конфигурация внешних электронов атома Фосфор 3s23p3; в соединениях наиболее характерны степени окисления +5, +3, и -3. Подобно азоту, Фосфор в соединениях главным образом ковалентен. Ионных соединений, подобных фосфидам Na3P, Са3Р2, очень мало. В отличие от азота, Фосфор обладает свободными 3d-орбиталями с довольно низкими энергиями, что приводит к возможности увеличения координационного числа и образованию донорно-акцепторных связей.
Фосфор химически активен, наибольшей активностью обладает белый Фосфор; красный и черный Фосфор в химических реакциях гораздо пассивнее. Окисление белого Фосфора происходит по механизму цепных реакций. Окисление Фосфора обычно сопровождается хемилюминесценцией. При горении Фосфора в избытке кислорода образуется оксид (V) Р4O10 (или Р2О5), при недостатке - в основном оксид (III) Р4О6 (или Р2О3). Спектроскопически доказано существование в парах P4O7, Р4O8, Р2О6, РО и других оксидов фосфора. Оксид Фосфора (V) получают в промышленного масштабах сжиганием элементарного Фосфора в избытке сухого воздуха. Последующая гидратация Р4O10 приводит к получению орто- (Н3РО4) и поли-(Нn+2РnО3n+1) фосфорных кислот. Кроме того, Фосфор образует фосфористую кислоту Н3РО3, фосфорноватую кислоту Н4Р2О6 и фосфорноватистую кислоту Н3РО2, а также надкислоты: надфосфорную Н4Р2О8 и мононадфосфорную Н3РО5. Широкое применение находят соли фосфорных кислот (фосфаты), в меньшей степени - фосфиты и гипофосфиты.
Фосфор непосредственно соединяется со всеми галогенами с выделением большого количества тепла и образованием тригалогенидов (РХ3, где X - галоген), пентагалогенидов (РХ5) и оксигалогенидов (например, РОХ3). При сплавлении Фосфора с серой ниже 100 °С образуются твердые растворы на основе Фосфора и серы, а выше 100 °С происходит экзотермическая реакция образования кристалличических сульфидов P4S3, P4S5, P4S7, P4S10, из которых только P4S5 при нагревании выше 200 °С разлагается на P4S3 и P4S7, а остальные плавятся без разложения. Известны оксисульфиды фосфора: P2O3S2, P2O2S3, P4O4S3, P6O10S5 и P4O4S3. Фосфор по сравнению с азотом менее способен к образованию соединений с водородом. Фосфористый водород фосфин РН3 и дифосфин Р2Н4 могут быть получены только косвенным путем. Из соединений Фосфора с азотом известны нитриды PN, P2N3, P3N5 - твердые, химически устойчивые вещества, полученные при пропускании азота с парами Фосфора через электрическую дугу; полимерные фосфонитрилгалогениды - (PNX2)n (например, полифосфонитрилхлорид), полученные взаимодействием пентагалогенидов с аммиаком при различных условиях; амидоимидофосфаты - соединения, как правило, полимерные, содержащие наряду с Р-О-Р связями Р-NH-Р связи.
При температурах выше 2000°С Фосфор реагирует с углеродом с образованием карбида РС3- вещества, не растворяющегося в обычных растворителях и не взаимодействующего ни с кислотами, ни со щелочами. При нагревании с металлами Фосфор образует фосфиды.
Фосфор образует многочисленные фосфорорганические соединения.
Оксид Мышьяка (V) получают нагреванием мышьяковой кислоты H3AsO4 (около 200 °C). Он бесцветен, около 500 °C разлагается на As2O3 и O2. Мышьяковую кислоту получают действием концентрированной HNO3 на As или As2O3. Соли мышьяковой кислоты (арсенаты) нерастворимы в воде, за исключением солей щелочных металлов и аммония. Известны соли, отвечающие кислотам ортомышьяковой H3AsO4, метамышьяковой HAsO3 и пиромышьяковой H4As2O7; последние две кислоты в свободном состоянии не получены. При сплавлении с металлами Мышьяк по большей части образует соединения (арсениды).
4) Сурьма
Висмут в сухом воздухе устойчив, во влажном наблюдается его поверхностное окисление. При нагревании выше 1000° С сгорает голубоватым пламенем с образованием оксида Bi2O3. В ряду напряжений Висмут стоит между водородом и медью, поэтому в разбавленной серной и соляной кислотах не растворяется; растворение в концентрированных серной и азотной кислотах идет с выделением SO2 и соответствующих оксидов азота.
Висмут проявляет валентность 2, 3 и 5. Соединения Висмута низших валентностей имеют основной характер, высших - кислотный. Из кислородных соединений Висмута наибольшее значение имеет оксид Bi2O3, при нагревании меняющий свой желтый цвет на красно-коричневый. Bi2O3применяют для получения висмутовых солей. В разбавленных растворах висмутовые соли гидролизуются. Хлорид BiCl3 гидролизуется с выпадением хлороксида BiOCl, нитрат Bi(NO3)3 - с выпадением основной соли BiONО3·BiOOH. Способность солей Висмут гидролизоваться используется для его очистки. Соединения 5-валентного Висмута получаются с трудом; они являются сильными окислителями. Соль КВiO3 (соответствующая ангидриду Bi2O5) образуется в виде буро-красного осадка на платиновом аноде при электролизе кипящего раствора смеси КОН, КСl и взвеси Bi2O3. Висмут легко соединяется с галогенами и серой. При действии кислот на сплав Висмута с магнием образуется висмутин (висмутистый водород) BiH3; в отличие от арсина AsH3, висмутин - соединение неустойчивое и в чистом виде (без избытка водорода) не получено. С некоторыми металлами (свинцом, кадмием, оловом) Висмут образует легкоплавкие эвтектики; с натрием, калием, магнием и кальцием - интерметаллические соединения с температурой плавления, значительно превышающей температуры плавления исходных компонентов. С расплавами алюминия, хрома и железа Висмут не взаимодействует.
Информация о работе Химия и биологическая роль элементов V А группы