Автор работы: Пользователь скрыл имя, 15 Февраля 2013 в 14:05, курсовая работа
Бензины являются одним из основных видов горючего для двигателей современной техники. Автомобильные и мотоциклетные, лодочные и авиационные поршневые двигатели потребляют бензины. В настоящее время производство бензинов является одним из главных в нефтеперерабатывающей промышленности и в значительной мере определяющим развитие этой отрасли.
Развитие производства бензинов связано со стремлением улучшить основное эксплуатационное свойство топлива - детонационную стойкость бензина, оцениваемую октановым числом.
Курсовая работа: Каталитический риформинг
Название: Каталитический риформинг
Раздел: Рефераты по химии
Тип: курсовая работа Добавлен 05:06:37 06 февраля 2011 Похожие работы
Просмотров: 3987 Комментариев: 0 Оценило: 2 человек Средний балл: 4.5 Оценка: неизвестно Скачать
Введение
Бензины являются одним из
основных видов горючего для двигателей
современной техники. Автомобильные
и мотоциклетные, лодочные и авиационные
поршневые двигатели потребляют
бензины. В настоящее время производство
бензинов является одним из главных
в нефтеперерабатывающей
Развитие производства бензинов
связано со стремлением улучшить
основное эксплуатационное свойство топлива
- детонационную стойкость
Каталитический риформинг бензинов является важнейшим процессом современной нефтепереработки и нефтехимии. Он служит для одновременного получения высокооктанового базового компонента автомобильных бензинов, ароматических углеводородов - сырья для нефтехимического синтеза - и водородосодержащего газа - технического водорода, используемого в гидрогенизационных процессах нефтепереработки. Каталитический риформинг является в настоящее время наиболее распространенным методом каталитического облагораживания прямогонных бензинов. Установки каталитического риформинга имеются практически на всех отечественных и зарубежных нефтеперерабатывающих заводах.
1 Основные реакции
Бензиновые фракции разных нефтей отличаются по содержанию нормальных и разветвленных парафинов, пяти- и шестичленных нафтенов, а также ароматических углеводородов. Однако распределение углеводородов в каждой из этих групп в достаточной мере постоянно. За исключением бензинов нафтеновых нефтей, производство которых весьма ограниченно, среди парафинов значительно преобладают углеводороды нормального строения и монометилзамещенные структуры. Относительное содержание более разветвленных изопарафинов невелико. Нафтены представлены преимущественно гомологами циклопентана и циклогексаиа с одной или несколькими замещающими алкильными группами. Такой состав, при содержании 50-70% парафинов и 5-15% ароматических углеводородов в бензинах, обусловливает их низкую детонационную стойкость, показанную в таблице 1. Октановые числа бензиновых фракций, подвергаемых каталитическому риформингу, обычно не превышают 50.
Таблица 1 − Октановые числа углеводородов
Углеводород Октановые числа Углеводород Октановые числа
м. м. н. м. м. м. н. м.
н-Пентан 61,9 61,7 4-
Изопентан 90,3 92,3 2,4-
н-Гексан 26,0 24,8 2,2,4-
2-Метилпентан 73,5 73,4
3-Метилпентан 74,3 74,5
2,3-Диметалбутан 94,3 101,7
н-Гептан 0,0 0,0
2-Метилгексан 46,4 42,4
3-Метилгексан 55,0 52,0
2,З-Диметилпентан 88,5 91,1 1,
2,4-Диметилпентан 83,8 83,1
н-Октан -17 -19 Толуол 103,5
2-Метилгептан 23,8 21,7 п-
Каталитический риформинг - сложный химический процесс, включающий разнообразные реакции, которые позволяют коренным образом преобразовать углеводородный состав бензиновых фракций и тем самым значительно улучшить их антидетонационные свойства.
Основой процесса служат три типа реакций. Наиболее важны перечисленные ниже реакции, приводящие к образованию ароматических углеводородов.
Дегидрирование шестичленных нафтенов, формула 1
(1)
Дегидроизомеризация пятичленных нафтенов, формула 2
(2)
Ароматизация (дегидроциклизация) парафинов, формула 3
(3)
Изомеризация углеводородов - другой тип реакций, характерных для каталитического риформинга. Наряду с изомеризацией пятичленных и шестичленных нафтенов, изомеризации подвергаются как парафины, так и ароматические углеводороды.
Рисунок 1 – изомеризация
парафинов и ароматических
Существенную роль в процессе играют также реакции гидрокрекинга. Гидрокрекинг парафинов, содержащихся, в бензиновых фракциях, сопровождается газообразованием, формула 4
С8Н18 + Н2 → С5Н12 + С3Н8 (4)
что ухудшает селективность процесса. С другой стороны, аналогичная реакция гидродеалкидирования алкилбензолов позволяет увеличить выход низкомолекулярных гомологов бензола, которые представляют наибольший практический интерес, формула 5
С6Н5С3Н7 + Н2 → С6Н6 + С3Н8 (5)
Протекают также реакции, приводящие к раскрытию циклопентанового кольца и к превращению пятичленных нафтенов в парафины, формула 6
(6)
Элементарные стадии ряда
приведенных реакций
Сырье каталитического риформинга обычно подвергают гидрогенизационной очистке, после чего в нем остается крайне незначительное количество примесей, в частности серо- и азотсодержащих соединений, являющихся каталитическими ядами. В условиях каталитического риформинга они подвергаются гидрогенолизу с отщеплением сероводорода, формула 7, и аммиака, формула 8
RSR + 2Н2 → 2RH + H2S (7),
RNHR + 2H2 → 2RH + NH3 (8)
2 Превращения шестичленных нафтенов
2.1 Реакции дегидрирования
Дегидрирование шестичленных нафтенов - основное направление их превращения в условиях каталитического риформинга. Скорости дегидрирования шестичленных нафтенов на платиновых катализаторах риформинга весьма велики и намного превышают скорости их дегидрирования на других металлических и оксидных катализаторах, показанную в таблице 2.
Таблица 2 − Сравнительная активность катализаторов в реакции дегидрирования циклогексана.
Катализатор * r, моль/(г с) Катализатор * r, моль/(г с)
34% Сr2O3/Al2O3
0,5
1% Pd/Al2O3
200
10% MoO3/Al2O3
3
5% Ni/SiO2
320
5% Ni/Al2O3
13
1% Rh/Al2O3
890
5% Co/Al2O3
13
0.5 Pt/Al2O3
1400-4000
Достаточно отметить, что
скорость дегидрирования циклогексана
на платиновых катализаторах в 500-1300
раз больше скорости той же реакции
на алюмомолибденовом
Химическое равновесие. Реакции дегидрирования шестичленных нафтенов в ароматические углеводороды обратимы, формула 9
(9)
Зная константу равновесия Кр, можно вычислить равновесные концентрации реагирующих веществ, формула 10
(10)
Ниже приведены логарифмы констант равновесия для реакций дегидрирования циклогексана и некоторых его гомологов при температурах от 400 до 550 °С, таблица 3
Таблица 3 – Логарифмы констант равновесия для реакций дегидрирования циклогексана и некоторых его гомологов
Углеводороды 408 °С
450 °С
500 °С 550 °С
Циклогексан 3,70 4,88 5,91 6.
Метилциклогексан 4,19 5,36 6,
Этилциклогексан 4,23 5.36 6,
н – Пропилциклогексан 4,26 5,39 6,
1, 2, 4 – Триметилциклогексан 5,11 - -
Константы равновесия для реакций дегидрирования гомологов циклогексана с одной алкильной группой (метилциклогексана, этилциклогексана, н-пропилциклогексана), при одинаковой температуре, значительно больше соответствующей константы для реакции дегидрирования циклогексана. Дальнейший рост константы равновесия идет при наличии нескольких замещающих алкильных групп в молекуле циклогексана (1,2,4-триметилциклогексан). Из этих данных можно заключить, что равновесие для реакций дегидрирования гомологов циклогексана сдвинуто в сторону ароматических углеводородов в большей степени, чем для циклогексана. Следовательно, условия, обеспечивающие полноту дегидрирования цикдогексана, в полной мере обеспечат также возможность исчерпывающего дегидрирования его гомологов.
Наибольшей полноте
Рисунок 2 − Зависимость
содержания бензола и толуола
в равновесной смеси с
Пользуясь кривыми на рисунке 2, можно определить степень превращения шестичленных нафтенов в условиях каталитического риформинга. Обычно процесс проводят в реакционном блоке, состоящем из трех-четырех реакторов, работающих в условиях, близких к адиабатическим. При наиболее широко применяемых параметрах (температура на входе в реакторы около 500°С, давление от 1,5 до 3 МПа, молярное отношение водород: сырье = 6-7), вследствие эндотермичности процесса температура газосырьевой смеси понижается в первом по ходу сырья реакторе на 40-60°С, т. е. до 460-440°С. Степень дегидрирования шестичленных нафтенов в первом по ходу сырья реакторе может достигнуть или превысить 90%.
2.2 Кинетика реакции
Установлено, что при дегидрировании циклогексана и метилциклогексана на монометаллических платиновых катализаторах порядок реакции по углеводороду - нулевой. Адсорбционные коэффициенты исходных нафтенов и образующихся ароматических углеводородов одинаковы. Исследование кинетики дегидрирования метилциклогексана на алюмоплатиновом катализаторе (Pt/Al2O3) при 315-372°С показало, что не только изменение парциального давления углеводорода, но и парциального давления водорода (от 0,11 до 0,41 МПа) не оказывает существенного влияния на скорость реакции.
Иные результаты были получены при дегидрировании циклогексана на алюмоплатинорениевых катализаторах (Pt-Re/Al2O3). Независимо от того, пропускали ли циклогексан над катализатором в смеси с водородом или инертным газом (Ni, He, Аr), реакция протекала по первому порядку относительно циклогексана.
Скорость превращения
циклогексана на алюмоплатиновых катализаторах
пропорциональна
Селективность. Дегидрирование шестичленных нафтенов в ароматические углеводороды на бифункциональных платиновых катализаторах может сопровождаться другими реакциями, в частности изомеризацией в пятичленные нафтены и гидрогенолизом. Однако скорости дегидрирования шестнчленных нафтенов в условиях каталитического риформинга намного больше скоростей протекания других реакций. Следствием является близкая к 100% селективность ароматизации шестичленных нафтенов.
Механизм реакции. Реакции дегидрирования циклогексана и его гомологов, приводящие к образованию ароматических углеводородов, протекают на металлическом компоненте катализатора риформинга. Адсорбция циклогексана на металлических участках катализатора может сопровождаться либо одновременной диссоциацией шести атомов водорода, либо последовательным быстрым их отщеплением.
Механизм реакции
Все стадии реакции дегидрирования циклогексана на алюмоплатиновых катализаторах протекают быстро, а потому трудно обнаружить в газовой фазе циклогексен и циклогексадиен, а тем более доказать, что они являются промежуточными продуктами реакции. Чтобы обнаружить промежуточные продукты реакции, была поставлена серия опытов, в которых степень превращения циклогексана изменялась в пределах от 32,0 до 2,9% увеличением объемной скорости подачи углеводород от 1000 до 18 000 ч-1. Продукты реакции при малых степенях превращения циклогексана, наряду с бензолом, содержали заметные количества циклогексена.
Исходя из полученных результатов сделан вывод о том, что дегидрирование циклогексана в бензол протекает через промежуточную стадию образования циклогексена, формула 11
(11)
Отношение циклогексен/бензол значительно возрастает при частичной дезактивации алюмоплатинового катализатора в результате отравления серой. Такой эффект, вероятно, объясняется тем, что при отравлении катализатора серой скорость дегидрирования циклогексана в циклогексен снижается значительно меньше, чем скорость дегидрирования циклогексена в бензол.
Алкилциклогексаны с блокированными положениями, благодаря наличию в них четвертичного атома углерода (гем-диалкилы), подвергаются дегидрированию на платиновых катализаторах при более высоких температурах, при которых ароматизация сопровождается перегруппировками. Так, при дегидрировании 1,1-диметилциклогексана и подобных ему соединений происходит элиминирование метальной труппы, в результате чего образуются толуол и метан, формула 12
(12)
С другой стороны, происходит миграция метильных групп, что приводит к образованию изомеров ксилола.
(13)
При осуществлении реакции на бифункциональном платиновом катализаторе 1,1-диметилциклогексан вероятно сперва подвергается изомеризации, после чего соответствующие изомеры диметилциклогексана превращаются в ксилолы.
2.3 Реакции изомеризации