Автор работы: Пользователь скрыл имя, 20 Января 2013 в 14:04, реферат
Комплексные соединения — самый большой и многочисленный класс неорганических соединений, но их изучение началось только в конце XIX – начале XX века.
Образование комплексных соединений не может быть объяснено с точки зрения обычного учения о валентности. Их состав совершенно не согласуется с теми числами валентности, которые используются при составлении формул более простых «бинарных» соединений, то есть соединений, состоящих только из двух элементов
1. Введение...............................................................................................................3
2. Комплексные соединения...................................................................................4
2.1 Общие принципы строения..............................................................................5
2.2 Кристаллогидраты и двойные соли.................................................................8
3. Комплексообразование.....................................................................................10
4.1 Общая характеристика семейства железа………………………………….13
4.2 Комплексные соединения элементов семейства железа.............................15
4.3 Применение некоторых комплексных соединений элементов семейства железа…………………………………………………………………………….17
5. Список используемой литературы.............................................................
Химический факультет
Кафедра неорганической химии
1. Введение......................
2. Комплексные соединения........
2.1 Общие принципы строения.......
2.2 Кристаллогидраты и
двойные соли..........................
3. Комплексообразование..........
4.1 Общая характеристика
семейства железа………………………………….
4.2 Комплексные соединения элементов
семейства железа........................
4.3 Применение некоторых
комплексных соединений
5. Список используемой литературы....................
Комплексные соединения — самый большой и многочисленный класс неорганических соединений, но их изучение началось только в конце XIX – начале XX века.
Образование комплексных соединений не может быть объяснено с точки зрения обычного учения о валентности. Их состав совершенно не согласуется с теми числами валентности, которые используются при составлении формул более простых «бинарных» соединений, то есть соединений, состоящих только из двух элементов. Поэтому успешное изучение комплексных соединений стало возможным лишь после того, как в химию были введены некоторые новые представления о валентной связи. Эти представления легли в основу теории комплексных соединений, предложенной в 1893 г. профессором Цюрихского университета Альфредом Вернером (1866-1919) и получившей название координационной теории. В своей теории Вернер разделил все неорганические вещества на так называемые соединения первого и высшего порядка. К соединениям первого порядка он отнес главным образом достаточно простые по своей структуре вещества, такие как H2O, NaCl, PCl3 и другие. Соединениями высшего порядка ученый предложил считать продукты взаимодействия между собой соединений первого порядка — кристаллогидраты, аммиакаты, полисульфиды, двойные соли, а также комплексные соединения.
Комплексные соединения — молекулярные соединения определенного состава, образование которых из более простых молекул не связано с возникновением новых электронных пар. В большинстве случаев комплексные соединения образуются при взаимодействии веществ в водных растворах. Но иногда образование комплексных соединений может происходить и в других условиях. Например, безводный хлорид кальция непосредственно соединяется с аммиаком, превращаясь в комплексную соль [Ca(NH3)8] Cl2.
Чаще всего образование комплексных соединений происходит около свободных ионов. Например, при взаимодействии ионов с молекулами воды под действием создаваемого ионом электрического поля молекулы воды определенным образом ориентируются и затем притягиваются к иону противоположно заряженным концом диполя. За счет такого притяжения в растворе образуется гидратированный ион и раствор все более концентрируется. На определенной стадии из него станут выделяться кристаллы растворенного вещества, заключающие в своем составе гидратированный ион. Если при этом молекулы воды, непосредственно окружающие его в растворе, связаны с ним непрочно, то вода не войдет в состав кристалла, а если связь иона с молекулами воды достаточно прочна, то в состав кристалла он войдет с некоторым числом молекул "кристаллизационной" воды. В результате получится кристаллогидрат данного вещества, представляющий собой комплексное соединение.
Согласно координационной теории, в молекуле любого комплексного соединения один из ионов, обычно положительно заряженный, занимает центральное место и называется комплексообразователем. Вокруг него в непосредственной близости расположено или, как говорят, координировано некоторое число противоположно заряженных ионов или электронейтральных молекул, называемых аддендами и образующих внутреннюю координационную сферу соединения. Остальные ионы, не разместившиеся во внутренней сфере, находятся на более далеком расстоянии от центрального иона, составляя внешнюю координационную сферу.
Например, в комплексной соли K2[PtCl6], схематическое строение которой показано на рис. 1, комплексообразователем является ион четырехвалентной платины, аддендами – ионы хлора, а во внешней координационной сфере находятся ионы калия.
Чтобы отметить различие между внутренней и внешней сферами в формулах комплексных соединений, адденды вместе с комплексообразователем заключают в квадратные скобки.
Комплексные соединения разделяют на две группы: однородные и неоднородные. К однородным относятся комплексные соединения, во внутренней сфере которых находятся только одинаковые лиганды, а к более многочисленной группе неоднородных — соединения, во внутренней сфере которых находится лиганды двух или более видов.
Образование неоднородных комплексов чаще всего происходит при замещении нескольких нейтральных молекул во внутренней сфере комплексного иона заряженными частицами. Например, при замещении трех молекул аммиака в комплексном ионе [Pt(NH3)6]4+ ионами хлора образуется неоднородный комплексный ион [Pt(NH3)3Cl3]+.
Общее число нейтральных молекул и ионов, связанных с центральным ионом в комплекс, называется координационным числом комплексообразователя. Например, в приведенной выше соли K2[PtCl6] координационное число комплексообразователя, то есть иона четырехвалентной платины, равно шести.
Координационное число играет в химии комплексных соединений не менее важную роль, чем число единиц валентности атома, и является таким же основным его свойством, как и валентность.
Величина координационного числа определяется главным образом размером, зарядом и строением электронной оболочки комплексообразователя. Наиболее часто встречается координационное число шесть, например: у железа, хрома, цинка, никеля, кобальта, четырехвалентной платины. Координационное число четыре свойственно двухвалентной меди, трехвалентному золоту, двухвалентной ртути, кадмию. Иногда встречаются и другие координационные числа, но значительно реже (например, два для серебра и одновалентной меди).
Подобно тому как валентность элемента далеко не всегда проявляется полностью в его соединениях, так и координационное число комплексообразователя иногда может оказаться меньше обычного. Такие соединения, в которых характерное для данного иона максимальное координационное число не достигается, называются координационно-ненасыщенными. Среди типичных комплексных соединений они встречаются сравнительно редко.
Заряд комплексного иона равняется алгебраической сумме зарядов составляющих его простых ионов. Входящие в состав комплекса электронейтральные молекулы не оказывают никакого влияния на величину заряда. Если вся внутренняя координационная сфера образована только нейтральными молекулами, то заряд комплексного иона равен заряду комплексообразователя.
О заряде комплексного иона можно также судить по зарядам ионов, находящихся во внешней координационной сфере. Например, в соединении K4[Fe(CN)6] заряд комплексного иона [Fe(CN)6] равен минус четырем, так как во внешней сфере находятся четыре положительных однозначных иона калия, а молекула в целом электронейтральна. Отсюда в свою очередь легко определить заряд комплексообразователя, зная заряды остальных содержащихся в комплексе ионов.
Согласно современной химической номенклатуре при названии комплексного иона сначала называется координационное число комплексообразователя, затем лиганды, затем комплексообразователь. Например, комплексное соединение K4[Fe(CN)6] называют гексоцианоферрат калия, а соединение [Cr(H2O)6]Cl3 — хлоридом гексогидрохрома.
При гидролизе комплексные соединения, как и большинство «бинарных» соединений, диссоциируют на катион и анион, но некоторые комплексные соединения с малостойкой внутренней сферой, например двойные соли, диссоциируют с образованием частиц всех входящих в их состав элементов. Большинство комплексных соединений диссоциирует на комплексный катион и анион или на комплексный анион и катион. Например, гексоцианоферрат калия K4[Fe(CN)6] диссоциирует с образованием четырех катионов калия и гексоцианоферрат-аниона.
При определенных условиях нейтральные молекулы, входящие в состав комплекса, например молекулы аммиака, могут быть замещены молекулами воды. При этом образуются кристаллогидраты — кристаллические образования, в построении которых молекулы воды участвуют как самостоятельные единицы. Особенно легко образуются кристаллогидраты различных солей.
Состав кристаллогидратов принято изображать формулами, показывающими, какое количество кристаллизационной воды содержит кристаллогидрат. Например, кристаллогидрат сульфата двухвалентной меди (медный купорос), содержит на одну молекулу CuSO4 пять молекул воды, изображается формулой CuSO4*5H2O; кристаллогидрат сульфата натрия (глауберова соль) — формулой Na2SO4*10H2O и т. д.
По своему строению кристаллогидраты — комплексные соединения. Например, кристаллогидрат хлорида хрома CrCl3*6H2O является комплексным соединением [Cr(H2O)6]Cl3, отщепляющим в растворе ионы [Cr(H2O)6]3+.
Кристаллогидраты, содержащие шесть молекул воды, встречаются очень часто. К ним относятся, например, кристаллогидраты хлорида трехвалентного железа FeCl3, хлорида никеля NiCl2, хлорида алюминия AlCl3 и других.
Согласно координационной теории, все они имеют строение, аналогичное строению кристаллогидрата хлорида хрома: [Fe(H2O)6]Cl3, [Ni(H2O)6]Cl2, [Al(H2O)6]Cl3.
Точно также и другие кристаллогидраты
следует рассматривать как
.К комплексным солям очень близко примыкают так называемые двойные соли, например обыкновенные квасцы: KAl(SO4)2*12H2O или K2SO4*Al2(SO4)3*24H2O. Подобно двойным солям, комплексные соли часто образуются из двух простых солей и могут быть изображены формулами, аналогичными формулам двойных солей. Например, комплексная соль K[Ag(CN)2] соответствует двойной соли AgCN*KCN.
Основное различие между двойными и комплексными солями заключается в том, что двойные соли при диссоциации дают все те ионы, которые находились в растворах простых солей, из которых они были образованы, а комплексные соли диссоциируют с образованием комплексных ионов.
Однако резкой границы между этими солями не существует, т.к. комплексные ионы в свою очередь могут подвергаться диссоциации. В зависимости от величины диссоциации различают более стойкие и менее стойкие комплексные ионы. Например, раствор комплексной соли K4[Fe(CN)6] не дает ни одной реакции, характерной для цианид-ионов или ионов железа, следовательно, диссоциация иона [Fe(CN)6]4- настолько мала, что практически ее можно считать несуществующей, а раствор соли K[MgCl3] дает все реакции ионов магния и хлора. На этом основании K[MgCl3] обычно считают двойной солью с формулой KCl*MgCl2.
Информация о работе Комплексные соединения трехвалентных элементов семейства железа