Общий белок сыворотки крови. Методы определения, клинико-диагностическое значение, видовые особенности

Автор работы: Пользователь скрыл имя, 08 Февраля 2014 в 18:21, контрольная работа

Описание работы

В живых клетках происходит синтез множества органических молекул, среди которых главную роль играют полимерные макромолекулы – белки, нуклеиновые кислоты, полисахариды. Особая роль в жизнедеятельности живых организмов принадлежит белкам. От родителей детям передается генетическая информация о специфической структуре и функциях всех белков данного организма. Синтезированные белки выполняют транспортную, защитную, структурную функции, участвуют в передаче сигналов от одной клетке к другим и таким же образом реализуют наследственную информацию.

Содержание работы

Введение………………………………………………………………..3
1. Общий белок сыворотки крови…………………………………….
2. Методы определения, клинико-диагностическое значение, видовые особенности……………………………………………………………
Заключение…………………………………………………………….....20
Список используемой литературы ……………………………………...

Файлы: 1 файл

контрольная по биохимии.docx

— 54.69 Кб (Скачать файл)

Глобулины плазмы – это множество различных белков. При электрофорезе они премещаются вслед за альбуминами. Взаимосвязь с липидами обеспечивает комплексом глобулинов растворимое состояние и транспорт в различные ткани. На основе электрофоретической подвижности глобулины подразделяются на α2-, α1-, β- и γ- глобулины. (α- и β- глобулины синтезируются в печени и являются активными переносчиками различных веществ крови). В период интенсивного роста животного в крови отмечается относительное снижение уровня альбуминов и соответствующее повышение уровня α- и γ- глобулинов. Β- глобулины активно взаимодействуют с липидами крови γ- глобулины, наименее подвижная и наиболее тяжелая фракция их всех глобулинов, синтезируется происходящими из части стволовых клеток костного мозга В – лимфоцитами или образующимися из них плазматическими клетками. Они выполняют защитную функцию, являясь защитными антителами (иммуноглобулинами). У птиц изучены три класса иммуноглобулинов: IgG, IgM, IgA, у млекопитающих их пять – IgG, IgM, IgE, IgD. IgA. В количественном плане в крови преобладает IgG (80%). Используя метод иммуноэлектрофореза, выделяют в сыворотке крови до 30 белковых фракций. Все иммуноглобулины состоят из двух тяжелых полипептидных цепей (М. м. 53 000-75 000) и двух легких цепей (М. М. 22 500), связанных тремя дисульфидными мостиками. Каждый тип иммуноглобулинов способен специфически взаимодействовать лишь с одним определенным антигеном.

Сыворотка крови новорожденных  телят, ягнят, козлят, поросят, жеребят  практически не содержит антител. Новорожденные  животные не способны в первые дни жизни синтезировать антитела. Они появляются только после поступления в желудочно-кишечный тракт молозива. Самостоятельный синтез этих защитных белков в костном мозге, селезенке, лимфатических узлах отмечается с 3 или 4-недельного возраста животного. Поэтому важно напоить новорожденного молозивом, которое содержит в 10-20 раз больше иммуноглобулинов, чем обычное молоко. Имунноглобулины молозива способны без расщепления проникать путем пиноцитоза в стенку кишечника и поступать в кровь, создавая защиту организма (молозивный или колостральный иммунитет).

Т-лимфоциты кооперируют  с В-лимфоцитами в синтезе иммуноглобулинов, тормозят иммунологические реакции, лизируют различные клетки. В крови Т—лимфоциты составляют 70%, В-лимфоциты – около 30%. Для синтеза иммуноглобулинов необходима и третья популяция клеток – макрофаги. Они выступают как первичные факторы неспецефической защиты, благодаря способности захватывать и переваривать микроорганизмы, антигены, иммунные комплексы, передавать информацию о них Т- и В-лимфоцитам. Макрофаги выступают в роли посредников между всеми участниками процесса с помощью вырабатываемых клетками лимфокинов и монокинов.

В-лимфоциты образуют антитела лишь простив определенных, поступивших в организм антигенов (бактерий, вирусов). Ждя этого структура антигена и глобулинового рецептора на поверхности лимфоцита должны соответствовать друг другу, как ключ к замку.

Концентрация  γ- глобулинов увеличивается в сыворотке крови  при хронических инфекционных болезнях, при иммунизациях, беременности животных.

Целый ряд белков плазмы крови выполняет спецефические функции. Среди них следует выделить такие белки, как трансферрин, гаптоглобин, церулоплазмин, пропердин, система комплеманта, лизоцим, интерферон.

Трансферрины являются β- глобулинами, синтезируемыми в печени. Связывая два атома железа на молекулу белка, они транспортируют этот элемент в различные ткани, регулируют его концентрацию и удерживают его в организме. По величине заряда белковой молекулы, аминокислотному составу различают 19 типов трансферринов, которые связаны с наследственностью. Трансферрины могут оказывать и прямой бактериологический эффект. Концентрация трансферринов в сыворотке крови составляет около 2,9 г/л. Низкое содержание трансферринов в сыворотке крови может быть вызвано недостатком белков в рационе животного.

Гаптоглобин входит в состав  α2-глобулин, синтезирующейся в печени, имеет в своем составе медь (0,3%). Связывая медь, церулоплазмин обеспечивает должный уровень этого микроэлемента в тканях. На долю церулоплазмина приходится 3% всего количества меди организма животного. Он проявляет себя как фермент и как оксидант. Церулоплазмин является оксидазой адреналина, аскорбиновой кислоты. Важной характеристикой церулоплазмина является его способность окислять железо в тканях до Fe3+, депонируя его в таком виде.

Система комплемента –  это комплекс сывороточных белков глобулиновой природы, который рассматривается  как система проэнзимов, активация которых приводит к цитолизу, разрушению антигена. Синтез системы комплемента, насчитывающей до 25 разных белков, осуществляется преимущественно мононуклеарными фагоцитами, а также гистиоцитами. Это сложная эффекторная система белков сыворотки, играющая важную роль в регуляции иммунного ответа и в поддержании гомеостаза, в плане фило- и онтогенеза возникла раньше иммунной системы. В составе системы комплемента детально изучены 11 компонентов.  Каскад ферментативных реакций, запускаемый комплексом антиген – антитела и приводящий к последовательной активации всех компонентов компонента, начиная с первого, называется классическим путем активации. Обходный путь, который характеризуется активацией более поздних компонентов комплемента, начиная с С3, называется альтернативным. Разрушение мокробной клетки наступает только после активации компонента С4. Терминальные белки системы комплемента, последовательно реагируя один с другим, внедряется в двойной слой липидов, повреждая клеточную мембрану с образованием мембранных каналов, что и приводит к осмотическим нарушениям, проникновению внутрь клетки антител, комплемента с последующим лизисом внутриклеточных мембран. Принято считать, что содержание комплемента в сыворотке крови представляет один из наиболее объективных показателей состояния неспецифической защиты организма.

Пропердин – гликопротеин типа  γ- глобулина с молекулярной массой около 184 000. Он составляет 0,3% от общего количества белков сыворотки крови. Обладая высокой термолабильностью, пропердин разрушается за 30 минут при 56˚С. Место синтеза пропердина окончательно не выяснено. Вероятно, что в его синтезе принимает участие лимфоидная ткань. Пропердин проявляет в первую очередь бактерицидное действие в отношении грамотрицательных микробов. Для проявления активности пропердина требуется обязательное присутствие первых четырех компонентов комплемента и ионов магния, соответствующих пропердиновую систему. Выявлена связь между уровнем пропердиновой системы и степенью резистентности организма животного.

Интерферон – это низкомолекулярный  белок (М. м. 24 000-36 000), который синтезируется и экскретируется клетками тканей в ответ на проникновение в них вирусов.  Из клеток интерферон легко проникает в кровяное русло и распределяется по всем органам и тканям. После проникновения вируса в клетку происходит освобождение одноцепочной РНК и синтез на ее основе двухцепочной РНК. Получается таким образом РНК и индуцирует синтез интерферона. Интерферон связывается с плазматической мембраной других клеток организма и стимулирует их способность сопротивления вирусной инфекции. Противовирусный эффект интерферона связан с его способностью активировать в клетках синтез ингибиторов и ферментов, блокирующих трансляцию вирусной Ирнк и, следовательно, размножение вируса. Интерферон обладает и иммунорегулирующими свойствами. Различают три разновидности интерферонов: а-интерферон (лейкоцитарный), обладающий противовирусным и антипролиферативным, противоопухолевым действием; β-интерферон (фибробластный), обладающий в основном противоопухолевым, а также антивирусным действием; γ-интерферон (лимфоцитарный или иммунный), обладающий преимущественно иммуномодулирующими свойствами.

Физиологические роли белков крови многочисленны, основные из них следующие:

- Поддерживают коллоидно-онкотическое давление, сохраняя объем крови, связывая воду и задерживая ее, не позволяя выходить из кровеносного русла;

- Принимают участие в процессах свертывания крови;

- Поддерживают постоянство Рн крови, формируя одну из буферных систем крови;

- Соединяясь с рядом веществ (ХС, билирубин и др.), а также с ЛС, доставляют их в ткани.

- Поддерживают нормальный уровень катионов в крови путем образования с ними недиализируемых соединений (например, 40-50%кальция сыворотки связано с белками; значительная часть железа, меди, магния и других микроэлементов также связано с белками);

- Играют важнейшую роль в иммунных процессах;

- Служат резервом аминокислот;

- Выполняют регулирующую функцию (гормоны, ферменты и другие биологически активные белковые вещества).

Клинико-диагностическое  значение:

  1. Нормопротеинемия – нормальное содержание общего белка;
  2. Гипопротеинемия – пониженное содержание общего белка;
  3. Гиперпротеинемия – повышенное содержание белка;

Изменение общего белка крови  может быть относительным и абсолютным.

Гиперпротеинемия:

1. Серьезное обезвоживание.

2. При сгущении крови  из-за незначительных потерь жидкости, что бывает при профузных поносах, усиленном потоотделении, неукротимой рвоте, несахарном диабете, при холере, непроходимости кишечника, генерализованном перитоните, тяжелых ожогах, лишении воды.

3. При хроническом полиартрите  и некоторых и некоторых хронических  воспалительных процессах.

4. Стойкая гиперпротеинемия до 12% и выше отмечается при миеломной болезни (плазмацитоме), макроглобулинемии Вандельстрема, при которых в плоских костях черепа появляются дополнительные очаг и образования «ненормальных», патологических белков – парапротеинов.

Гипопротеинемия связана почти всегда с гипоальбуминемией, а гиперпротеинемия – с гиперглобулинемией.

Гипоальбуминемию организм компенсирует гиперглобулинемией (даже если нет раздражения ретикуло-эндотелиальной системы) для того, чтобы сохранить уровень коллоидно-осмотического давления. Напротив, увеличение глобулинов компенсируется гипоальбуминемией.

Важное диагностическое  значение имеет выяснение количественных взаимоотношений между отдельными фракциями сыворотки крови. Их изучение позволяет произвести дифференциацию заболеваний даже тогда, когда содержание общего белка в сыворотке оказывается  неизменным.

Относительная гиперпротеинемия – связана с уменьшением объема циркулирующей крови вследствие дегидрации.

Абсолютная гиперпротеинемия – наблюдается при избыточном синтезе патологических белков, повышенном образовании иммуноглобулинов, усиленном синтезе белков острой фазы воспаления.

Кроме содержания общего белка, для диагностики различных патологичных процессов важное значение имеет определение белковых фракций. Нарушение оптимального соотношения между ними называют диспротеинемией. Наиболее выраженные диспротеинемии бывают при поражении органов, где синтезируются белки. Особенно часто уменьшается количество альбуминов (гипоальбуминемия), которые выполняют важные функции по поддержанию коллоидно-осмотического давления крови, регуляции водного обмена между кровью и межтканевым пространством, связывания и транспортировки углеводов, липидов, гормонов, витаминов, минеральных веществ.

Гипоальбумиемия развивается вследствие белкового голодания т является типичным признаком болезней печени (гепатита, гепатодистрофии, абсцессов, цирроза и опухолей), т. к. в ней синтезируются все альбумины. Отмечается она при различных незаразных, инфекционных и паразитарных болезнях, когда наступает вторичное поражение печени (пневмонии, кетоз, перикардит, миокардоз, лейкоз, туберкулез, сальмонеллез, колибактериоз, диспепсия, острые респираторные болезни и др.). Выраженной бывает гипоальбуминемия при хронических заболеваниях почек (нефроз, нефрит), которые сопровождаются потерей белка с мочой (протеинурия) и развитием отеков.

Увеличение количества альбуминов бывает редко – преимущественно  при дегидратации. При изменениях количества альбуминов нарушается их соотношение с глобулинами (изменяется альбуминно-глобулиновый коэффициент), которое у здоровых животных колеблется в пределах от 0,7 до1,0 (у собак 1,2).

Количество альфа-глобулинов увеличивается при острых воспалительных процессах (ревматизм, пневмония, гломерулонефрит, артрит) и при обострении болезней с хроническим течением (туберкулез, гепатит), поскольку к этой группе относятся белки «острой фазы» (С-реактивный белок, церулоплазмин, гаптоглобин, альфа-1-антитрипсин, альфа-2-макроглобулин, кислый альфа-1-гликопротеин). Уменьшается их уровень редко, чаще всего при тяжелых дистрофических процессах в печени, где частично синтезируются альфа-глобулин.

Увеличение количества бета-глобулинов наблюдается чаще всего при инфекциях с хроническим течением, болезнях почек (нефроз, гломерулонефрит), циррозе печени. В состав фракций бета-глобулинов входит фибриноген, увеличение содержания которого бывает при крупозной пневмонии, бронхопневмонии, лейкозе, септическом эндокардите, а уменьшение – при болезнях печени, где синтезируется.

Фракции гамма-глобулинов содержат основную массу антител (иммуноглобулинов), которые обеспечивают гуморальную защиту организма, поэтому количество их в сыворотке крови зависит от морфологической зрелости и функциональной полноценности иммунореактивной ткани.

Низкий уровень гамма-глобулинов бывает у новорожденных, особенно в первый день жизни, поскольку они не проходят через плацентарный барьер, а поступают в организм только с молозивом (физиологический иммунодефицит), поэтому в поддержании их уровня имеет большое значение качество молока, своевременность его выпойки, состояние слизистой оболочки тонкого кишечника. Синтез собственных иммуноглобулинов начинается с 5-7 дня жизни и достигает оптимального уровня лишь в 6-месячном возрасте, поэтому молодняк восприимчив ко многим болезням (сальмонеллезу, стрептококкозу, пастереллезу, вирусных респираторных, пневмоний). Понижение содержания гамма-глобулинов отмечается также при различных заболеваниях, которые сопровождаются поражениями иммунной системы (миелома, лимфолейкоз, болезнь Гамборо), потерей иммуноглобулинов при нефрозах, энтеритах, хронических кровотечениях, вследствие угнетение функции иммунной системы различными токсинами, лекарственными препаратами (иммунодепрессантами).

Информация о работе Общий белок сыворотки крови. Методы определения, клинико-диагностическое значение, видовые особенности