Примеры использования водорода, в качестве источника энергии

Автор работы: Пользователь скрыл имя, 26 Сентября 2013 в 19:41, реферат

Описание работы

Современная энергетика, как зарубежных стран, так и нашей страны, основана преимущественно на потреблении углеводородных энергоресурсов. Электростанции сжигают природный газ, мазут и уголь. Двигатели автомобилей, самолетов и других массово применяемых машин используют также топливо на основе невозобновляемых углеводородных природных ресурсов. В общем балансе потребляемой энергии только атомная и гидроэнергия составляют крупную долю — где-то около одной четверти в нашей стране. Доля солнечной, геотермальной энергии, энергии ветра, морских волн увеличивается значительными темпами, но продолжает составлять очень небольшую величину. Рассчитывать на существенные прорывы в этой области пока не приходится, хотя в целом ряде стран наметился большой прогресс. Так, Франция около 80% электроэнергии получает на АЭС, Исландия и Дания значительную долю электричества вырабатывают с помощью ветра и т. д.

Содержание работы

Введение. 3

Топливные элементы.. 6

Типы топливных элементов. 9

Состояние работ по водородной энергетике в России. 11

Примеры использования водорода, в качестве источника энергии. 14

Список использованной литературы.. 16

Файлы: 1 файл

Doc1.doc

— 710.00 Кб (Скачать файл)

Введение. 3

Топливные элементы.. 6

Типы топливных элементов. 9

Состояние работ по водородной энергетике в России. 11

Примеры использования водорода, в  качестве источника энергии. 14

Список использованной литературы.. 16

 

Введение

Современная энергетика, как зарубежных стран, так и нашей страны, основана преимущественно на потреблении углеводородных энергоресурсов. Электростанции сжигают природный газ, мазут и уголь. Двигатели автомобилей, самолетов и других массово применяемых машин используют также топливо на основе невозобновляемых углеводородных природных ресурсов. В общем балансе потребляемой энергии только атомная и гидроэнергия составляют крупную долю — где-то около одной четверти в нашей стране. Доля солнечной, геотермальной энергии, энергии ветра, морских волн увеличивается значительными темпами, но продолжает составлять очень небольшую величину. Рассчитывать на существенные прорывы в этой области пока не приходится, хотя в целом ряде стран наметился большой прогресс. Так, Франция около 80% электроэнергии получает на АЭС, Исландия и Дания значительную долю электричества вырабатывают с помощью ветра и т. д.

Дальнейшее интенсивное развитие современной энергетики и транспорта ведет человечество к крупномасштабному  энергетическому и экологическому кризису.

Стремительное сокращение запасов  ископаемого топлива принуждает развитые страны принимать серьезные  усилия по поиску альтернативных возобновляемых экологически чистых источников энергии.

Но в последние годы наметился  инновационный поворот к использованию  более эффективного энергоресурса — водорода.

Современные авиационные, ракетные и  автомобильные двигатели, топливные  элементы все чаще начинают возвращаться к частичному или полному использованию  водорода. Водород обладает целым  набором качеств, делающих сегодня его употребление выгодным: он имеет большую энергоэффективность и химическую активность, в результате его сгорания образуется вода, не обладающая токсичностью и не наносящая ущерба окружающей среде. Правда, есть и недостатки; главные из них — дороговизна производства и пожароопасность.

Водородная энергетика сформировалась как одно из направлений развития научно-технического прогресса более 30 лет назад. Работы по водородной энергетике во многих странах относятся к  приоритетным направлениям социально-экономического развития и находят все большую поддержку со стороны как государства, так и частного бизнеса. Ведется активный поиск путей перевода большинства энергоемких отраслей промышленности, включая транспорт, на водородное топливо и электрохимические генераторы на основе использования топливных элементов (ТЭ).

Водородные топливные элементы считаются будущим мировой энергетики благодаря своей эффективности  и экологической безопасности.

Использование водорода в качестве основного энергоносителя приведет к созданию принципиально новой водородной экономики, станет научно-техническим прорывом, сравнимым по своим социально-экономическим последствиям с тем революционным воздействием на развитие цивилизации, которое оказали электричество, двигатель внутреннего сгорания, химия и нефтехимия, информатика и связь.

Около 1000 фирм, компаний, концернов, университетских  лабораторий, государственных и  научно-технических объединений  Запада уже много лет усиленно работают в различных направлениях водородной энергетики.

Учитывая существенный рост цен на энергоресурсы и серьезные экологические проблемы, некоторые страны уже приняли законы и государственные программы по изучению водородных технологий и широкому их применению. В их числе Исландия, США, Япония, ЕЭС.

В работы по ТЭ и энергетическим установкам на их базе ежегодно инвестируется свыше 500 млн.долл. США.

Наиболее динамично развиваются  эти работы в США, Канаде и Японии, где наряду с большим объемом  НИОКР, ведутся активные работы по коммерциализации водородной энергетики. Создано большое количество энергетических установок на топливных элементах мощностью от единиц ватт до мегаватт, уже сейчас конкурентоспособных с аналогичными установками, основанными на традиционных технологиях сгорания углеводородного топлива.

С прогрессом в области разработки энергоустановок на основе ТЭ связывается надежда на решение проблемы обеспечения человечества возобновляемыми экологически чистыми энергоресурсами, а также возможность изменения и совершенствования системы энергоснабжения (электро- и теплоснабжения) различных объектов - от сотовых телефонов, компьютеров и автомобилей до жилых домов, крупных промышленных предприятий и в целом городов.

Топливные элементы

ТЭ – электрохимический  источник тока, в котором осуществляется прямое превращение энергии топлива  и окислителя, непрерывно подводимых к электродам, непосредственно в электрическую энергию, без необходимости сначала преобразовывать её в тепло или механическую работу вращения турбин. Так как преобразование тепла в работу у этих установок отсутствует, их энергетический КПД значительно выше, чем у традиционных энергоустановок и может составлять до 90%. Кроме того, топливом здесь служит водород, а значит, основной выхлоп таких систем – просто водяной пар.

Ясно, что за топливными элементами – будущее. Водород будет питать двигатели автомобилей, небольшие топливные батареи будут обеспечивать теплом и светом частные домохозяйства, они же будут встроены в портативную электронику.

Химические реакции в ТЭ идут на специальных пористых электродах (аноде и катоде), активированных палладием (или другими металлами платиновой группы), где химическая энергия, запасенная в водороде и кислороде, эффективно преобразуется в электрическую энергию. Водород окисляется на аноде, а кислород (или воздух) восстанавливается на катоде.

Катализатор на аноде  ускоряет окисление водородных молекул  в водородные ионы (Н+) и электроны. Водородные ионы (протоны) через мембрану мигрируют к катоду, где катализатор  катода вызывает образование воды из комбинации протонов, электронов и кислорода. Поток электронов через внешний кругооборот производит электрический ток, который используется различными потребителями.

Напряжение, возникающее  на отдельном ТЭ, не превышает 1,1 вольта. Для получения необходимой величины напряжения ТЭ соединяются последовательно в батареи, а для получения необходимой мощности батареи ТЭ соединяются параллельно. Такие батареи ТЭ вместе с элементами газораспределения и терморегулирования монтируются в единый конструктивный блок, называемый электрохимическим генератором (ЭХГ).

Однако если бы всё  было так просто, топливные элементы уже давно превратились бы в основной источник энергии, сменив статус «перспективной разработки» на место в разнообразных  устройствах и машинах в каждом доме. «Перспективные» топливные элементы впервые использовались еще на советской орбитальной станции «Мир», однако были недолговечны и слишком дороги для внедрения в массовое хозяйство.

Проблема в том, что  для их эффективной работы нужны  катализаторы.

Сейчас огромное количество институтов и частных компаний бьются над увеличением эффективности  топливных элементов и снижением  их себестоимости. В инновационных  решениях нуждаются также и разделяющие  электроды твердые электролиты (мембраны), и материалы электродов, которые должны обладать большой коррозионной стойкостью.

В качестве катализаторов  в топливных элементах чаще всего  применяют платину и её сплавы с не менее драгоценным палладием. Этот материал позволяет значительно  облегчить процесс ионизации водорода. В реакции участвуют только атомы, находящиеся на поверхности, поэтому для каталитических целей применяют платину в виде наночастиц (так называемой платиновой черни). Однако в процессе нанесения дорогостоящей платины наиболее распространенным методом аэрографии её потери достаточно велики, что еще более удорожает конечный продукт.

Техасские специалисты  во главе с Питером Страссером предлагают использовать сплав платины  с кобальтом и медью.

Новый катализатор представляет собой частицы сплава, содержание металла в которых изменяется от поверхности к ядру: поверхность частиц обогащена платиной, а ядро состоит преимущественно из меди и кобальта. Первые испытания этого катализатора показали эффективность, превышающую аналогичный показатель современных катализаторов для топливных элементов в 4–5 раз.

Вдобавок нанокатализатор  оказался существенно дешевле.

Для производства катализатора нанесенные на графитовый электрод частицы  сплава помещаются в раствор кислоты  и подвергаются циклическому воздействию  переменного напряжения. Менее благородные металлы, в особенности медь, растворяются с поверхности, оставляя её обогащенной платиной. Ядро же имеет тот же состав, что и исходный сплав.

Более того, образовавшиеся в результате электрохимического травления  меди и кобальта пустоты на поверхности частиц приводят не только к обогащению поверхности платиной, но и к значительному увеличению площади поверхности катализатора. Тем не менее, увеличение эффективности катализатора в 4–5 раз по сравнению с чистой платиновой чернью, по мнению Страссера, не может быть объяснено исключительно увеличением площади поверхности.

Компьютерные расчеты  показали, что расстояние между атомами  платины в обогащенной ей оболочке короче по сравнению с этой дистанцией в чистой платине. Такое «сжатое» состояние фиксируется с помощью обогащенного кобальтом и медью ядра. Сокращенное межатомное расстояние платина–платина, по всей видимости, способствует более легкой адсорбции кислорода. Это же, судя по всему, изменяет электронную структуру оболочки так, что процесс переноса электрона с образованием отрицательно заряженной молекулы кислорода становится значительно упрощенным.

Типы топливных  элементов

Существуют различные  типы ТЭ. Их обычно классифицируют по используемому  топливу, рабочему давлению и температуре, а также по характеру применения.

Наибольшее распространение  получила классификация топливных  элементов по типу электролита как  среды для внутреннего переноса ионов (протонов). Электролит между  электродами определяет операционную температуру и от этой температуры зависит тип катализатора.

Выбор топлива и окислителя, подаваемых в ТЭ, определяется, в  первую очередь, их электрохимической  активностью (то есть скоростью реакции  на электродах), стоимостью, возможностью легкого подвода топлива и  окислителя в ТЭ и отвода продуктов реакции из ТЭ.

Водород считается основным источником топлива для ТЭ, однако процесс преобразования топлива  позволяет извлекать водород  и из других его видов, включая  метанол, природный газ, нефть и  др.

В отличии от аккумулятора и батареек, ТЭ не истощается и не требует перезарядки; он работает, пока подается топливо.

Щелочной ТЭ (AFC)

Электролит состоит  из жидкого KOH, который циркулирует в пространстве между электродами.

Они использовались с  середины 1960-х годов в космических  программах, обеспечивая питанием электрические  системы космических кораблей "Буран", "Шаттл" и др. Коммерческое применение их ограничено, т.к. они должны работать с чистыми водородом и кислородом (либо с кислородом воздуха, из которого удален углекислый газ).

Щелочные ТЭ имеют  КПД до 70%

ТЭ на протонообменной  мембране

(PEMFC)

В качестве электролита  используется твердая полимерная мембрана (тонкая пластмассовая пленка), которая проводит водородные ионы (протоны) с анода на катод.

Они обеспечивают высокую  плотность тока, что позволяет  уменьшать их вес, стоимость, объем  и улучшать качество работы. Неподвижный  твердый электролит упрощает герметизацию в процессе производства, уменьшает коррозию, и обеспечивает более долгий срок службы ТЭ. Эти ТЭ работают при низких температурах (ниже 100.С), что ускоряет запуск и реакцию на изменения потребности в электричестве. Они идеально подходят для транспорта и стационарных установок небольшого размера.

ТЭ на фосфорной кислоте

(PAFC)

Электролитом является бумажная матрица, насыщаемая фосфорной  кислотой, также проводящей протоны. Это наиболее разработанные коммерчески  развитые ТЭ. Они применяются в  стационарных электрогенераторных устройствах в зданиях, гостиницах, больницах, аэропортах и электростанциях.

ТЭ на фосфорной кислоте  вырабатывают электричество с КПД  более 40% или около 85%, если пар, который  производит этот ТЭ, используется для  совместного производства тепла  и электричества (в сравнении с 30% КПД наиболее эффективного двигателя внутреннего сгорания).

ТЭ на расплаве карбоната

(MCFC)

Использует расплавленную  смесь лития/калия (или лития/натрия) для проведения ионов карбоната  от катода к аноду. Рабочая температура - приблизительно 650°C, что позволяет использовать топливо напрямую, без какой-либо дополнительной его подготовки, и никель в качестве катализатора.

Их конструкция более  сложна, чем конструкция ТЭ на фосфорной  кислоте, из-за их более высокой рабочей  температуры и использования расплава электролита. Им требуется существенное количество времени для того, чтобы они достигли рабочей температуры и смогли реагировать на изменения в потребности в электричестве, и поэтому лучше всего они подходят для условий, где необходима постоянная подача больших количеств электроэнергии.

Наибольшее количество подобных установок построено в  США и Японии. В США имеется  демонстрационная опытная электростанция мощностью 1.8 МВт.

ТЭ на твердых оксидах

(SOFC)

В качестве электролита  используется твердый керамический материал (стабилизированная иттрием окись циркония), которая проводит атомы кислорода от катода к аноду при чрезвычайно высокой температуре - свыше 1000°C. Это позволяет им использовать относительно загрязненные виды топлива, например, получаемые при газификации угля. Энергетический КПД – около 60%.

Их относительно простая  конструкция (обусловленная использованием твердого электролита и самых  разных видов топлива) в сочетании  с существенным количеством времени, необходимым для того, чтобы они достигли рабочей температуры и смогли реагировать на изменения в потребности в электричестве, делает их подходящими для больших и очень больших стационарных электрогенераторных установок и электростанций.


Состояние работ  по водородной энергетике в России

В России водородная проблематика давно и активно изучалась, правда, в основном для военного применения, достаточно вспомнить, что топливные  элементы летали в космос на "Буране".

Россия имеет уникальные достижения в области разработки ТЭ. Однако пока что свои возможности мы не используем в достаточной мере, обрекая себя не только на отставание в перспективной области энергетики, но в будущем ставим себя в зависимость от мировой экономической и политической конъюнктуры.

Основные причины, препятствующие работам в России по ТЭ и водородной энергетике:

- отсутствие национальной  программы по разработке и  производству ТЭ и энергетических  установок на их основе;

- отсутствие целевого  государственного финансирования  фундаментальных и прикладных  исследований и разработок в области ТЭ. (Ранее они финансировались в рамках ракетно-космических программ);

- неразвитость и неготовность  промышленной базы для производства  ТЭ и энергетических установок  на их базе;

- неготовность частного  бизнеса по–настоящему субсидировать фундаментальные и прикладные исследования;

- отсутствие четкой  и ясной государственной политики  и реальной поддержки работ  по экологически чистым ресурсо-  и энергосберегающим технологиям.

ГМК "Норильский никель", крупнейшая в России и одна из крупнейших в мире компаний по производству драгоценных и цветных металлов, произвел значительные инвестиции в отечественную академическую науку, купил крупный пакет акций американской инновационной компании, ориентированной на разработку топливных элементов. Интерес "Норникеля" понятен: он — крупнейший производитель палладия и всех других платиноидов, без которых невозможно производство топливных элементов, существенно увеличивающих КПД производства энергии без нанесения вреда окружающей среде.

В целях сокращения допущенного отставания в исследованиях и разработках по водородной энергетике и топливным элементам и осознавая исключительное значение водородной энергетики для экономики России, ОАО "ГМК "Норильский никель" и Российская академия наук договорились о совместных работах по развертыванию и финансированию наиболее важных фундаментальных, научно-исследовательских и опытно-конструкторских работ по основным направлениям и элементам топливных элементов и энергетических устройств на их базе, предусмотрев в том числе:

o  создание научно-технического, технологического и конструкторского задела по ключевым агрегатам, устройствам и системам водородной энергетики и ТЭ;

Информация о работе Примеры использования водорода, в качестве источника энергии