Примеры использования водорода, в качестве источника энергии

Автор работы: Пользователь скрыл имя, 26 Сентября 2013 в 19:41, реферат

Описание работы

Современная энергетика, как зарубежных стран, так и нашей страны, основана преимущественно на потреблении углеводородных энергоресурсов. Электростанции сжигают природный газ, мазут и уголь. Двигатели автомобилей, самолетов и других массово применяемых машин используют также топливо на основе невозобновляемых углеводородных природных ресурсов. В общем балансе потребляемой энергии только атомная и гидроэнергия составляют крупную долю — где-то около одной четверти в нашей стране. Доля солнечной, геотермальной энергии, энергии ветра, морских волн увеличивается значительными темпами, но продолжает составлять очень небольшую величину. Рассчитывать на существенные прорывы в этой области пока не приходится, хотя в целом ряде стран наметился большой прогресс. Так, Франция около 80% электроэнергии получает на АЭС, Исландия и Дания значительную долю электричества вырабатывают с помощью ветра и т. д.

Содержание работы

Введение. 3

Топливные элементы.. 6

Типы топливных элементов. 9

Состояние работ по водородной энергетике в России. 11

Примеры использования водорода, в качестве источника энергии. 14

Список использованной литературы.. 16

Файлы: 1 файл

Doc1.doc

— 710.00 Кб (Скачать файл)

Среднегодовое потребление энергии увеличивается  на 5.7%. Если этот темп сохранится, за следующие 20 лет расход энергии увеличится в 4.5 раза. Основным источником получения энергии в мире дающим 97% её количества является ископаемое топливо, в том числе 38% составляет уголь, 19%-природный газ и 10%- нефть.2% электроэнергии вырабатывается на ГЭС, а другие источники, такие как ядерный распад, древесина и прочие вырабатывают 1 % энергии [3]. 

 

Таблица 1.

Энергетические  системы, пригодные для использования  человеком

№ вида

Энергетические системы

ТИП 1

(основаны  на возобновляемых источниках  энергии)

1.

На:

гравитационных силах; молекулярном движении; движении приливов и волн; движении воздуха; геотермальных силах

2.

фотосинтезе растений; жизнедеятельности  организма

3.

Фотохимических, фотоэлектрических  и 

термоэлектрических процессах

ТИП 2

(основаны  на возобновляемых источниках  энергии)

1.

На:

сжигании радиационного топлива

2.

внутриядерных процессах

3.

биохимическом преобразовании энергии

4.

водородном топливе


Всего сказанного выше достаточно для того, чтобы  убедиться в необходимости пере хода человечества на новые виды энергии, не связанные со сжиганием традиционного топлива. Для удобства рассмотрения вопросов поиска новых источников энергии кажется целесообразным, прежде всего, все существующие на земном шаре энергетические системы, использование которых осуществляется или потенциально может осуществляться человеком, разделить условно на два типа:

Ø     системы, основанные на возобновляемых источниках энергии;

Ø    системы, основанные на невозобновляемых источниках. 

Каждый тип, в  свою очередь, можно подразделить на несколько видов энергетических систем (табл. 1).

Системы, относящиеся  к первому виду, малоперспективны, несмотря на их экологическую чистоту. В начале века, по имеющимся оценкам, они смогут удовлетворить мировые  потребности лишь на 5 - 10% [4]. 

 

Таблица 2 Различные источники энергии, их состояние, экологичность, перспективы развития

Источник энергии

Состояние и экологичность

Перспективы использования

Уголь

Твердое

Химическое загрязнение  атмосферы, условно принятое за 1

Потенциальные запасы 10125 млрд. т, перспективен не менее чем  на 100 лет

Нефть

Жидкое

Химическое загрязгнение атмосферы 0, 6 условных единиц

Потенциальные запасы 270-290 млрд. т, перспективен не менее чем  на 30 лет

Газ

Газообразное

Химическое загрязгнение атмосферы 0, 2 условных единиц

Потенциальные запасы 270 млрд. т, перспективен на 30 - 50 лет

Сланцы

Твердое

Значит. Количество отходов  и трудно устраняемые выбросы

Запасы более 38400 млрд. т, малоперспективен из-за загрязнений

Торф

Твердое

Высокая зольность и  эколог. нарушения в местах добычи

Запасы значительны: 150 млрд. т, малоперспективен из-за высокой зольности и экол. нарушений в местах выработки

Гидроэнергия

Жидкое

Нарушение экологич. баланса

Запасы 890 млн. т нефт. эквивалента

Геотермальная энергия

Жидкое

Химическое загрязнение

Неисчерпаемы, перспективен

Солнечная энергия

 

Практически неисчерпаем

Энергия приливов

Жидкое

Тепловое загрязнение

Практически неисчерпаем

Энергия атомного распада

Твердое

Запасы физически исчерпаемы, экологически опасен


 

 

Схема 1 . Энергетические ресурсы и  структура использования

Соотношение используемых энергетических ресурсов в истории  человечества менялось с развитием  цивилизации в зависимости от истощения исчерпаемых энергоресурсов, возможности использования и экологических последствий. За последние 200 лет можно выделить три этапа:

можно выделить три этапа:

·угольный этап охватывающий весь XIX век и первую половину ХХ века, в это время  преобладает потребление угольного  топлива;

·нефтегазовый этап со второй половины ХХ века до 80-х годов, на смену углю приходит газ и нефть как более эффективные энергоносители чем твердые;

·начиная с 80-х  годов начинается постепенный переход  от использования минеральных исчерпаемых  ресурсов к неисчерпаемым (энергии Солнца, воды, ветра, приливов и т.д.).

Особо следует  сказать о ядерной энергетике. С начала мирового энергетического

кризиса роль атомной  энергетики возросла. Но уже в начале 80-х годов рост потребления атомной  энергии замедлился. В большинстве стран были пересмотрены планы сооружения АЭС. Это было последствием ряда экологических загрязнений при авариях, особенно в результате Чернобыльской катастрофы. Именно в этот период многие страны приняли решение о полном или постепенном отказе от развития атомной энергетики.

1.3 Особенности  альтернативной водородной энергетики

Водородная энергетика включает следующие основные направления:

Разработка эффективных  методов и процессов крупномасштабного  получения дешевого водорода из метана и сероводородсодержащего природного газа, а также на базе разложения воды; технологии хранения, транспортировки и использования водорода в энергетике, промышленности, на транспорте.  

 

1.3.1 Назначение, основные функциональные  показатели 

Водородная технология позволит остановить прогрессирующий рост загрязнения окружающей среды, исключив или принципиально сократив эмиссию токсикоагентов в тропосферу, в том числе, приземный слой атмосферы.

При получении  больших объемов водорода из метана и серо содержащих природных газов  может быть использована плазменно-мембранная технология удельной производительностью более чем в 100 раз выше по сравнению с традиционной. Удельные энергозатраты на производство 1 мводорода оказываются ниже реализованных в традиционной технологии в 2-3 раза (около 1 кВт/ч).

Производство  водорода из воды возможно на новом  типе электролизеров на базе катионопроводящей  мембраны МФ-4СК, выпускаемой в России и обеспечивающей получение водорода более высокой чистоты с удельными  энергозатратами в 1,5 меньшими, чем  у традиционных систем. Удельная производительность аппаратов в 10 раз выше, чем у предыдущего поколения. 

 

1.3.2 Область применения

Водородная технология используется для автономного обеспечения  различных видов наземного транспорта и жидководородных силовых установок для авиации, стационарных энергосистем с водородным аккумулированием энергии (ветровые, солнечные и другие виды энергоустройств). Применение водорода в химии, газо- и нефтехимии, производстве минеральных удобрений, биотехнологии, металлургии и т.д. позволит отказаться от традиционной организации процесса, повысить его качество и экономичность при ликвидации полного или основного выброса загрязняющих веществ в атмосферу.  

 

1.3.3 Основания для выбора

Технология даст возможность крупномасштабно получать дешевый водород в качестве ценного сырья и реагента при производстве удобрений, метанола, а также в процессах переработки нефти. Ресурсы сырья практически неограниченны. Водород является экологически чистым энергоносителем и его применение в энергетике, промышленности и на транспорте окажет положительное влияние на состояние окружающей среды. 

 

1.3.4 Состояние и тенденция развития

В настоящее  время в России создан ряд демонстрационных установок, реализующих новые высокоэффективные  технологии получения и использования водорода из метана, природных серосодержащих газов с помощью плазменно-мембранной технологии. При этом исключаются катализаторы и традиционные жидкостные системы газораспределения. Оно осуществляется посредством мембранных аппаратов. Существующие в мире системы имеют вместо этой стадии громоздкий термокаталитический процесс, экологически некорректный, с более высокими энергозатратами (в 2-3 раза) и низкой удельной производительностью.

В настоящее  время успешно завершаются исследования и разработки на уровне мощности 200 кВт на площадке ГНЦ "Курчатовский институт" и требуется переход к опытно-промышленной стадии на уровне мощности 1 МВт и производительности 10 м3/час. Предлагаемая технология не имеет мировых аналогов, к ней проявляет интерес ряд ведущих зарубежных фирм.

Для высокоэффективных  электролизеров на основе катионопроводящей  мембраны МФ-4СК в настоящее время  завершен цикл НИОКР и создано  производство электролизеров с улучшенными  показателями на базе российской технологии. Типоразмерный ряд доведен до производительности 20 м3/час и необходим завершающий этап по созданию 100 м3/час электролизера. Уровень лучших зарубежных разработок 50 м3/час на базе мембраны "Nafion" по удельным характеристикам близок к основным параметрам, указанным выше [5].

На базе той  же отечественной мембраны в России созданы электрохимические генераторы 10-20 кВт, использующие водородо-воздушную  смесь и имеющие КПД до 75%, при  этом системы эмитируют только чистую воду, токсичные компоненты выброса  отсутствуют полностью. 

 

1.3.5 Влияние водородной энергетики  на окружающую среду

При рассмотрении основных принципов водородной энергетики и ее влияния на окружающую среду, нельзя ограничиваться лишь загрязнением воздуха, так как это не единственный тип загрязнения. При сравнении различных энергетических источников следует обсудить и другие аспекты. Под этим можно подразумевать эффективность источников энергии, поэтому важно сопоставить водородную энергетику с другими энергетическими системами, такими как уголь - синтетическое топливо, атомная энергия - водород, атомная энергия - электричество и др.

С точки зрения охраны окружающей среды варианты водородной энергетики оцениваются выше старых энергетических систем, использующих ископаемые топлива. Заслуживает внимания тот факт, что, хотя энергетическая система солнечная система - водород самая безопасная по отношению к окружающей среде, все же система солнечная энергия - электричество будет эффективнее, так как в ней используется меньшее количество материалов. Предполагается что система солнечная система - водород будет работать в сочетании с фотогальваническими элементами, в которых расходуется большое количество кремния. Поэтому, если система море-солнце или с ветровой энергией, то влияние на окружающую среду будет меньше, и энергетическая система солнечная система водород будет более приемлемой, чем система солнечная система - электричество [6]. 

 

1.3.6 Дополнительные сведения о применении водорода в бытовых целях

Вся энергия, предназначенная  для бытовых целей, может быть получена из водорода (освещение, отопление и приготовление пищи). Однако это не самый оптимальный путь применения водорода.

Освещение, отопление и приготовление пищи. Для освещения не обязательно применять электричество, можно воспользоваться «холодным светом», получаемым при взаимодействии водорода с фосфором. Для приготовления пищи, отопления помещений может быть использован специальный керамический материал. Однако отопление помещений лучше осуществлять с помощью электрических насосов.

Электричество в доме. По-видимому, при внедрении водородной энергетики уменьшится потребление электроэнергии в жилых домах. Снизятся затраты на работу различных электронных устройств. Однако для снабжения водородом зданий необходимо полностью переоборудовать трубопроводы, горелки и большую часть другого оборудования [1]. 

 

1.3.7 Пути развития водородной  энергетики

Следует сразу  установить, что преимущества водородной энергетики могут быть достигнуты только путем постадийного внедрения этой энергетики (исследование, проектирование, создание опытной установки, небольшая проверка, более крупная проверка и, наконец, полный переход на водородную энергетику). На первой стадии в качестве источника для получения водорода можно использовать уголь, который при нагревании с водой образует смесь СО и Н2; СО затем будет окислен до СОи выброшен в атмосферу, а Ндоставят по трубопроводу на ближайшую установку. Здесь он может быть использован для получения электричества.

Во второй стадии в качестве источника энергии  для получения водорода может быть использована ядерная установка; образующийся водород затем будет доставляться в город и применяться для получения электроэнергии или для работы части транспорта.

Информация о работе Примеры использования водорода, в качестве источника энергии