Автор работы: Пользователь скрыл имя, 11 Апреля 2013 в 21:07, курсовая работа
Этилен впервые был получен немецким химиком Иоганном Бехером в 1680 году при действии купоросного масла на винный спирт. Вначале его отождествляли с "горючим воздухом", т.е. с водородом. Позднее, в 1795 году этилен подобным же образом получили голландские химики Дейман, Потс-ван-Труствик, Бонд и Лауеренбург и описали под названием "маслородного газа", так как обнаружили способность этилена присоединять хлор с образованием маслянистой жидкости - хлористого этилена ("масло голландских химиков").
Получение и применение
этилена……………………………………………………………….. 3
Галогенирование этилена……………………………………………
Гидратация этилена………………………………………………….
Окись этилена и синтезы на её основе…………………………………………………………………
Синтезы на основе гомологов этилена………………………………………………………………..
Полимеризация олефинов……………………………………………
Список используемой литературы…………..……………………………………………….
КУРСОВАЯ РАБОТА
ЭТИЛЕН И ЕГО ПРОИЗВОДНЫЕ В ПРОМЫШЛЕННОМ ОРГАНИЧЕСКОМ СИНТЕЗЕ
Выполнил
студент II-ХТ-4
Принял
доктор химических наук
Самара
1999
Стр.
Получение и применение
этилена……………………………………………………………
Галогенирование этилена……………………………………………
Гидратация этилена………………………………
Окись этилена и синтезы
на её основе………………………………………………………………
Синтезы на основе гомологов
этилена……………………………………………………………
Полимеризация олефинов……………………………………………
Список используемой
литературы…………..……………………………………
Этилен впервые был получен немецким химиком Иоганном Бехером в 1680 году при действии купоросного масла на винный спирт. Вначале его отождествляли с "горючим воздухом", т.е. с водородом. Позднее, в 1795 году этилен подобным же образом получили голландские химики Дейман, Потс-ван-Труствик, Бонд и Лауеренбург и описали под названием "маслородного газа", так как обнаружили способность этилена присоединять хлор с образованием маслянистой жидкости - хлористого этилена ("масло голландских химиков").
Изучение свойств этилена, его производных и гомологов началось с середины ХIХ века. Начало практическому использованию этих соединений положили классические исследования А.М. Бутлерова и его учеников в области непредельных соединений и особенно созданная Бутлеровым теория химического строения. В 1860 году он получил этилен действием меди на йодистый метилен, установив структурную формулу этилена.
Этилен представляет собой бесцветный газ, обладающий слабым, едва ощутимым запахом. Он плохо растворим в воде (при 0°С в 100 г воды растворяется 25,6 мл этилена), горит светящимся пламенем, образует с воздухом взрывчатые смеси. Термически менее устойчив, чем метан. Уже при температурах выше 350°С этилен частично разлагается на метан и ацетилен:
3С2Н4 2СН4 + 2С2Н2
При температуре около 1200°С диссоциирует главным образом на ацетилен и водород:
С2Н4 С2Н2 + Н2
В природных газах (за исключением вулканических) этилен не встречается. Он образуется при пирогенетическом разложении многих природных соединений, содержащих органические вещества.
Процесс пиролиза для
получения этилена
2СН4 t° С2Н4 + 2Н2
и осторожным гидрированием ацетилена:
Для получения этилена
и его гомологов методом
Производительность
При определённых условиях пиролиза бензина при получении 1т этилена может быть одновременно выделено: пропилена - 0,65т; изобутилена - 0,11т; н-бутиленов - 0,11т, дивинила - 0,12т; бензола - 0,165т и толуола - 0,08т, использование которых позволит значительно улучшить технико-экономические показатели нефтехимических производств. Из этилена получают более 200 ценных соединений, важнейшими из которых являются хлористый этил, дихлорэтан-1,2, этиленхлоргидрин, окись этилена, диоксан, этиленгликоль, этиловый эфир этиленгликоля, уксусногликолевый эфир, диэтиленгликоль, этиламин, этаноламин, диэтаноламин, триэтаноламин.
Обычной реакцией между галогенами и непредельными углеводородами является присоединение атомов галогена по месту двойной связи с образованием галогенопроизводных с чётным числом атомов галогена. Однако у олефинов с разветвлёнными цепями, а при высокой температуре и у олефинов нормального строения галогенирование протекает сложнее, с образованием полихлоридов и непредельных моногалогенопроизводных.
Активность галогенов
в реакциях присоединения понижается
с увеличением их молекулярного
веса. Фтор реагирует весьма энергично,
реакция присоединения хлора
протекает несравненно
При хлорировании этилена сначала получается дихлорэтан:
С2Н4 + Сl2 С2Н4Сl2 + 201 кДж
Но хлорирование этилена может идти и дальше, в результате чего образуется трихлорэтан и тетрахлорэтан. Выход этих продуктов растёт с повышением температуры реакции. Для торможения цепной реакции замещения при хлорировании этилена и получения более чистого дихлорэтана процесс ведут при низких температурах и в присутствии небольших количеств хлорного железа и О2.
Следует отметить, что Е.В. Алексеевский в 1928 году установил, что при пропускании смеси этилена и хлора над углём при 120°С получается чистый дихлорэтан с выходом в 80% от теоретического.
Процесс получения дихлорэтана
хлорированием этилена в
Рисунок 1
Избыточный дихлорэтан стекает в сборник 2. Газы, содержащие пары дихлорэтана, хлористый водород, не прореагировавший этилен, поступают в вымораживатель для извлечения дихлорэтана, а оставшиеся газы промываются водой для удаления хлороводорода, после чего выводятся из системы. Из сборника 2 дихлорэтан-сырец насосом 3 направляется в смеситель 4, где растворённый хлористый водород нейтрализуется 5-10%-ным раствором едкого натра. Затем азеотропная смесь дихлорэтан-вода отгоняется при температуре 72°С в колонне азеотропной сушки, не показанной на схеме, и для освобождения от трихлорэтана и других примесей поступает в ректификационную колонну 10.
Процесс осуществляется в среде жидкого дихлорэтана, который растворяет хлор и этилен и обеспечивает необходимый отвод тепла из зоны реакции. Циркуляция дихлорэтана через выносной теплообменник позволяет вести реакцию с хорошим выходом при температуре 30-40°С.
Дихлорэтан получил широкое практическое применение как неогнеопасный растворитель при извлечении жиров, а также для синтеза таких ценных химических продуктов, как этиленгликоль и его эфиры, этилендиамин, дибензил, хлористый винил, полисульфидный синтетический каучук (тиокол) и др. Дихлорэтан используется для борьбы с вредителями с/х (окуривание или фумигация).
Дихлорэтан легко отщепляет хлористый водород, превращаясь в хлористый винил:
активир. уголь
СН2Сl-СН2Сl 480-520°С СН2 = СНСl + НСl
Производство этого важного для промышленности мономера осуществляется и другими методами. При хлорировании этилена при температуре 430°С образуется хлористый винил:
СН2 = СН2 + Сl2 СН2 = СНСl + НСl
Хороший выход наблюдается и
при дегидрохлорировании
СН2Сl-СН2Сl + NaOH 75°С, 2,5 атм СН2 = СНСl + NaСl + Н2О
Для получения этиленгликоля
Хорошие результаты получают при омылении в автоклаве формиатом натрия в присутствии метанола:
СН2Сl-СН2Сl +2НСООNa + 2СН3ОН
СН2ОН-СН2ОН +2NaCl +2НСООСН3
Образующийся муравьино-метиловый эфир действием щелочи переводится в формиат натрия и метиловый спирт, которые снова реагируют с дихлорэтаном. Процесс проводится непрерывно.
Практический интерес
CCl2F-CCl2F + Zn ZnCl2 + CClF = CF2
CCl2F-CCl2F+ Zn ZnCl2 + CF2 = CF2
Эти непредельные соединения способны полимеризоваться под влиянием перекисей и других инициаторов с образованием важных в практическом отношении продуктов. Как непредельные соединения перфторолефины могут быть использованы и для ряда других синтезов.
Гидратация этилена является сейчас
одним из основных производственных
методов получения этилового
спирта. Она осущесвляется в
Способность этилена присоединять элементы воды была известна ещё в конце ХVIII века. А.М. Бутлеров в 60-тых годах прошлого столетия применил реакцию гидратации при помощи серной кислоты к различным этиленовым углеводородам.
Реакции, приводящие к образованию спирта при взаимодействии этилена с серной кислотой, могут быть в общем виде представлены следующими уравнениями:
Побочными продуктами являются диэтиловый эфир, продукты полимеризации и обугливания этилена и др.
Эфир образовывается
главным образом при реакции
между диэтилсульфатом и
(С2Н3)2SО4 + С2Н3ОН (С2Н5)2О + С2Н5НSО4
На ход реакции большое влияние оказывает концентрация этилена в исходном газе. При уменьшении концентрации соляной кислоты, t° реакции, парционального давления этилена и интенсивности перемешивания реагирующих веществ. С повышением концентрации кислоты скорость поглощения этилена увеличивается (93%-ная кислота поглощает в 10раз медленнее, чем 97,5%-ная), так как увеличивается скорость образования диэтилсульфата. В таком же направлении действует и повышение температуры до определённого предела. На рисунке 2 изображена схема производства спирта непрерывным способом.
Газовая смесь, содержащая не менее 30% этилена, или чистый этилен, подаётся в нижнюю часть абсорбционной колонны 1 и поднимается вверх навстречу орошающей смеси из серной кислоты и этилсульфатов.
Абсорбционная колонна
представляет собой