Автор работы: Пользователь скрыл имя, 29 Ноября 2013 в 01:50, шпаргалка
1. Взаимосвязь между процессами обмена веществ и энергии в организме. Термодинамическая система
Процессы жизнедеятельности на Земле обусловле–ны в значительной мере накоплением солнечной энер–гии в биогенных веществах (белках, жирах, углеводах) и последующими превращениями этих веществ в жи–вых организмах с выделением энергии.
Работы А. М. Лавуазье (1743—1794) и П. С. Лапласа (1749– 1827) прямыми калориметрическими измерениями показа–ли, что энергия, выделяемая в процессе жизнедеятельнос–ти, определяется окислением продуктов питания кислородом воздуха, вдыхаемого животными.
46. Токсические свойства соединений группы IIB (Zn, Cd, Hg)
Соединения Zn, Cd, Hg могут вызывать
нарушение белкового обмена, что
проявляется в выделении бел–
Токсичное действие соединений группы IIB на орга–низм вызывается еще и тем, что ионы этих металлов вступают во взаимодействие с сульфгидрильными SH-группами белков, ферментов и аминокислот.
При взаимодействии ионов
металлов с SH-группами образуются слабодиссоциирующие
и, как правило, не–растворимые соединения.
Поэтому блокирование сульфгидрильных
групп приводит к подавлению ак–тивности
ферментов и свертыванию
Наиболее выражено химическое сродство SH-груп-пам у ртути. Очевидно, это связано с тем, что комплек-сообразующие свойства ртути выше и она образует бо–лее прочные связи с серой.
SH-группы входят в состав
более 100 ферментов, ак–тивность
которых может быть подавлена
из-за блоки–рования этих
Известно, что токсические свойства элементов за–висят от той химической формы, в какой они попадают в организм. Наиболее токсичны те формы, которые раст–воряются в липидах и легко проникают через мембрану в клетку.
В литературе описан случай
массового отравления ртутью в Японии.
Неорганические соединения ртути под
действием ферментов
Постепенно концентрируясь, метилртуть вызы–вает необратимые разрушения в организме и смерть.
Использование соединений цинка и ртути в медици–не основано на их вяжущем, прижигающем и антисеп–тическом действии. В качестве глазных капель приме–няют 0,25%-ный водный раствор сульфата цинка ZnSО4. В стоматологии хлорид цинка используют для прижи–гания папиллом, для лечения воспаленных слизистых оболочек. Применяется также оксид цинка ZnO.
Хлорид ртути (II) (сулема) очень ядовит, и его водные растворы при больших разбавлениях (1 : 1000) приме–няются для дезинфекции. Для лечения кожных и вене–рических заболеваний применяют мази, содержащие оксид ртути (II) HgO и сульфид ртути (II) HgS. Хлорид ртути (I) (каломель) плохо растворяется в воде и поэто–му мало ядовит. Эту соль применяют в ветеринарии как слабительное средство.
Ртуть при обычных условиях
– жидкий металл, кото–рый способен
растворять другие металлы. При этом
образуются твердые сплавы – амальгамы.
В стомато–логии для
Источники ультрафиолетового
света – ртутно-квар-цевые
Таким образом, по характеру функционирования и воз–действия на организм металлы IIB-группы можно разде–лить на жизненно необходимый элемент Zn и токсичные примесные элементы Cd и Hg.
47. Биологическая роль р-элементов IIIA-группы. Применение их соединений в медицине
Бор относится к примесным микроэлементам, его мас–совая доля в организме человека составляет 10-5 %. Бор концентрируется главным образом в легких (0,34 мг), щитовидной железе (0,30 мг), селезенке (0,26 мг), пече–ни, мозге (0,22 мг), почках, сердечной мышце (0,21 мг). Биологическое действие бора еще недостаточно изуче–но. Известно, что бор входит в состав зубов и костей, очевидно, в виде труднорастворимых солей борной кис–лоты с катионами металлов.
Избыток бора вреден для организма человека. Имеют–ся данные, что избыток бора угнетает амилазы, проте-иназы, уменьшает активность адреналина.
По содержанию в организме человека (10-5 %) алю–миний относится к примесным микроэлементам. Алю–миний концентрируется главным образом в сыворотке крови, легких, печени, костях, почках, ногтях, волосах, входит в структуру нервных оболочек мозга человека.
Суточное потребление алюминия человеком состав–ляет 47 мг. Алюминий влияет на развитие эпителиаль–ной и соединительной тканей, на регенерацию костных тканей, влияет на обмен фосфора.
Алюминий оказывает
Избыток алюминия в организме
тормозит синтез ге–моглобина, так
как благодаря довольно высокой
комп-лексообразующей
Галлий – примесный микроэлемент (содержание в ор–ганизме человека 10−6—10−5%). Биологическая роль гал–лия в живых организмах почти не выяснена.
Таллий относится к весьма токсичным элемен–там. Ион Т1 склонен подобно Ag+ образовывать прочные соединения с серосодержащими лигандами.
Вследствие этого он очень токсичен, так как подав–ляет активность ферментов, содержащих тиогруппы – SH. Даже весьма незначительные количества соедине–ний Т1 + при попадании в организм вызывают выпадение волос.
Вследствие близости радиусов К+ и Т1+ они обла–дают сходными свойствами и способны замещать друг друга в ферментах. Ионы Т1 и К являются синергистами. Этим объясняется тот факт, что ферменты пиру-ваткиназа и диолдегидратаза активируются не только ионами К, но и ионами Т1 (ион Т1 замещает ион К в ка–талитическом центре ферментов). Синергизм тал–лия и калия проявляется и в том, что подобно ионам К ионы Т1 накапливаются в эритроцитах.
В качестве противоядия при отравлении ионами Т1 используют серосодержащий лиганд – аминокислоту цистин.
В заключение необходимо отметить, что биологи–ческая роль р-элементов IIIA-группы изучена недоста–точно. В настоящее время известно, что бор и галлий взаимодействуют в растениях с ингибиторами их раз–вития полифенолами, уменьшая токсичность послед–них. Установлена также несомненная роль алюминия в построении эпителиальной и соединительной тканей и, кроме того, его участие в ферментативных процес–сах как в качестве активатора, так и в качестве ингиби–тора. Свойством ингибировать многие серосодержа–щие ферменты обладает ион Т1.
Биологическая активность р-элементов
IIIA-группы связана главным образом
с их способностью к обра–зованию
комплексных соединений с кислородсодер–жащими
лигандами и нерастворимых
48. Биологическая роль р-элементов IVA-группы. Применение их соединений в медицине
По содержанию в организме человека (21,15%) угле–род относится к макроэлементам. Он входит в состав всех тканей и клеток в форме белков, жиров, углево–дов, витаминов, гормонов. С биологической точки зре–ния углерод является органогеном номер 1.
По содержанию в организме человека (103 %־) крем–ний относится к примесным микроэлементам. Больше всего кремния в печени, надпочечниках, волосах, хруста–лике. Так как природный диоксид кремния плохо раст–ворим в воде, то в организм человека он попадает не столько через пищеварительный тракт, сколько воз–душным путем через легкие в виде пылеобразного SiО2. С нарушением обмена кремния связывают возни–кновение гипертонии, ревматизма, язвы, малокровия.
В медицинской практике применяют карбид кремния (IV) SiC – карборунд для шлифовки пломб и пластмас–совых протезов. Диоксид кремния SiО2 входит в состав силикатных цементов.
Необходимо отметить, что пыль, состоящая из частиц угля, диоксида кремния и алюминия при систематиче–ском воздействии на легкие вызывает заболевание – пневмокониозы. При действии угольной пыли – это антракоз, профессиональное заболевание шахтеров. При вдыхании пыли, содержащей S1O2 , возникает си–ликоз, при действии алюминиевой пыли – алюминоз.
По содержанию в организме человека (10−6—10−5%) германий относится к микроэлементам. Биологиче–ская роль окончательно не выяснена. Соединения гер–мания усиливают процессы кроветворения в костном мозге. Известно также, что соединения германия мало–токсичны.
По содержанию в организме человека (10-4 %) олово относится к микроэлементам.
Олово попадает в организм человека с кислыми про–дуктами, консервированными в жестяных банках, покры–тых слоем олова. В кислой среде олово растворяется и в форме соли поступает в кровь, проявляя токсиче–ское действие. Однако в опытах на крысах установлено, что олово в малых количествах стимулирующе действует на рост крыс. Это дает основание предполагать его необхо–димость и для человека. Безусловно, выяснение биоло–гической роли этого микроэлемента требует дополни–тельного изучения.
В медицинской практике находят применение различ–ные материалы, в частности пломбировочные, содер–жащие олово. Так, олово входит в состав серебряной амальгамы (28%) для изготовления пломб.
Свинец и его соединения, особенно органические, весьма токсичны. Соединения свинца влияют на синтез белка, энергетический баланс клетки и ее генетический аппарат. Многие факторы говорят в пользу денатура-ционного механизма. Установлено, что свинец – один из элементов, присутствие которых в продуктах пита–ния влияет на развитие кариеса.
С пищей, водой, атмосферным воздухом человек ежесуточно поглощает до 100 мкг свинца. Свинец депо–нируется в основном в скелете (до 90%) в форме труд–норастворимого фосфата. Массовая доля свинца в ор–ганизме человека – 106 %־ . Безопасным для человека считают суточное поступление 0,2—2 мг свинца.
В медицинской практике нашли применение как наруж–ные вяжущие антисептические средства ацетат свинца (примочки) и оксид свинца (II) РЬО (входит в состав пластыря свинцового простого).
49. Биологическая роль р-элементов VA-группы. Применение их соединений в медицине (азот, фосфор)
Азот по содержанию в организме человека (3,1%) от–носится к макроэлементам. Если учитывать только мас–су сухого вещества организма (без воды), то в клетках содержание азота составляет 8—10%. Этот элемент – составная часть аминокислот, белков, витаминов, гормо–нов. Азот образует полярные связи с атомами водорода и углерода в биомолекулах. Во многих бионеорганиче–ских комплексах (металлоферментах) атомы азота по донорно-акцепторному механизму связывают неорга–ническую и органическую части молекулы.
Вместе с кислородом и углеродом азот образует жиз–ненно важные соединения – аминокислоты, содержа–щие одновременно аминогруппу с основными свойст–вами и карбоксильную группу (—СООН) с кислотными свойствами. Аминогруппа выполняет очень важную функцию и в молекулах нуклеиновых кислот. Огромно физиологическое значение азотсодержащих биолиган-дов – порфиринов, например гемоглобина.
В биосфере происходит круговорот азота. Азотный цикл имеет жизненно важное значение для сельского хозяйства.
Необходимо отметить еще одно важное в биологиче–ском плане свойство азота – его растворимость в воде почти такая же, как у кислорода. Присутствие избытка азота в крови может быть причиной развития кессон–ной болезни. При быстром подъеме водолазов проис–ходит резкое падение давления, соответственно пада–ет растворимость азота в крови (закон Генри), и пузырьки элементного азота, выходящие из крови, закупоривают мелкие сосуды, что может привести к параличу и смерти.
По содержанию в организме
человека (0,95%) фосфор относится к
макроэлементам. Фосфор – элемент-органоген
и играет исключительно важную роль
в обме–не веществ. В форме
фосфата фосфор представ–ляет собой
необходимый компонент
Многие реакции биосинтеза
осуществляются благода–ря переносу
фосфатных групп от высокоэнергетического
акцептора к
Обмен фосфора в организме тесно связан с обменом кальция. Это подтверждается уменьшением количества неорганического фосфора при увеличении содержания кальция в крови (антагонизм).
Суточная потребность человека в фосфоре составляет 1,3 г. Фосфор настолько распространен в пищевых про–дуктах, что случаи его явной недостаточности (фосфат–ный голод) практически неизвестны. Однако далеко не весь фосфор, содержащийся в пищевых продуктах, мо–жет всасываться, поскольку его всасывание зависит от многих факторов: рН, соотношения между содержанием кальция и фосфора в пище, наличия в пище жирных кис–лот, но в первую очередь – от содержания витамина D.
Целый ряд соединений фосфора используют в качест–ве лекарственных препаратов.
Следует отметить, что фосфорорганические соедине–ния, содержащие связь С—Р, являются сильными нер–вно-паралитическими ядами, входят в состав боевых отравляющих веществ
50. Биологическая роль р-элементов VA-группы (мышьяк, сурьма, висмут). Применение их в медицине
По содержанию в организме человека мышьяк отно–сится к микроэлементам. Он концентрируется в пече–ни, почках, селезенке, легких, костях, волосах. Больше всего мышьяка содержится в мозговой ткани и в мыш–цах. Мышьяк накапливается в костях и волосах и в те–чение нескольких лет не выводится из них полностью. Эта особенность используется в судебной экспертизе для выяснения вопроса, имело ли место отравление соединениями мышьяка.
Определение мышьяка в
биологическом материале
Если выделяющийся водород содержит примесь ар-сина, то при нагревании газовой смеси происходит раз–ложение AsH3 :
2AsH3 = 2As° + 3Н2.
и на стенках трубки для газовыделения образуется черный блестящий налет мышьяка – «мышьяковое зер–кало». Реакция Марша весьма чувствительна и позво–ляет обнаружить 7—10-7 г мышьяка.
В относительно больших дозах соединения мышья–ка очень ядовиты. Как уже упоминалось, токсическое действие соединений мышьяка обусловлено блокиро–ванием сульфгидрильных групп ферментов и других биологически активных веществ.