Свойства S, P, D элементов, имеющих биологическое значение

Автор работы: Пользователь скрыл имя, 15 Апреля 2014 в 13:17, реферат

Описание работы

Биологические функции s–элементов очень разнообразны: активация ферментов, участие в процессах свертывания крови, в различных реакциях организма, связанных с изменением проницаемости мембран по отношению к ионам калия, натрия и кальция, участие в образовании мембранного потенциала, в запуске внутриклеточных процессов, таких как обмен веществ, рост, развитие, сокращение, деление и секреция. Обеспечивают перенос в клетке информации. Чувствительность клеток к данным ионам обеспечивается разностью их содержания вне и внутри клетки, градиентом концентрации (ионной асимметрией). Старение – понижение градиента концентрации, смерть – выравнивание концентрации вне и внутри клетки. Градиент концентрации обеспечивается связыванием свободных ионов клетки специфическими белками. Одним из немногих универсальных регуляторов жизнедеятельности клеток являются ионы кальция. Градиент концентраций Са2+ между цитоплазмой и средой на уровне 4 порядков и обеспечивается связыванием Са2+ в хелатное соединение специфическими белками. Кальмодулин – один из наиболее изученных кальций связывающих белков, широко распространенных и встречается в клетках животных, растений и грибов. Этот белок способен регулировать большое число (более 30 описанных в настоящее время) различных процессов, происходящих в клетке.

Файлы: 1 файл

Джамшед Холов.docx

— 100.07 Кб (Скачать файл)

В процессе плавки образуются 2 жидкие фазы-сплав сульфидов меди, Fe, цветных металлов (штейн; 22-45% Сu) и сплав оксидов металлов и силикатов (шлак; 0,4-0,7% Сu), к-рые не смешиваются друг с другом. Шлаки складируют или используют при произ-ве строит.материалов. Осваиваются автогенные процессы плавки, использующие тепло экзотермич. р-ций окисления сульфидов; концентраты обрабатывают в атмосфере О2, воздуха, обогащенного О2, или подогретого воздуха. Высокая производительность, получение богатых медью штейнов (до 75% Сu) и концентрированных по SO2 газов, миним. расход углеродистого топлива-достоинства, определяющие автогенные процессы как перспективное направление в развитии пирометаллургии меди. Важнейшие способы автогенной плавки-кислородно-факельная, взвешенная, отражательная, электроплавка, плавка в жидкой ванне, процессы "Норанда", "Мицубиси".

Черновую медь рафинируют огневым, а затем электрохим. способом. Огневое рафинирование основано на большем, чем у меди, сродстве большинства металлов-примесей к кислороду, что позволяет при продувке расплава воздухом окислить и ошлаковать количественно Fe, S, Zn, Pb и, частично, Ni, As, Sb, Bi. Для удаления кислорода расплав меди обрабатывают восстановителем (прир. конверсир. газ, сырая древесина). Готовый металл (>=99,5% Сu) разливают в формы, удобные для проведения электролиза. Полученные отливки служат анодами. Электролитич. рафинирование проводят в сернокислых р-рах при наложении постоянного тока; в процессе электролиза осуществляется непрерывная циркуляция подогреваемого (57-67°С) р-ра, медь осаждают на катодных основах, получаемых также электролизом в спец. матричных ваннах при условиях, обеспечивающих осаждение чистого металла. Для получения ровного катодного осадка требуемой текстуры в электролит вводят ПАВ. Катодную медь (>=99,94% Сu) переплавляют и разливают в формы, удобные для послед.обработки прокаткой, волочением. При растворении анодов ряд примесей (As, Fe, Ni, Sb) накапливается в электролите, поэтому часть его выводят из циркуляц. цикла (заменяя равным объемом р-ра H2SO4) и направляют на переработку для получения техн. сортов медного и никелевого купоросов. Нерастворимые включения анода образуют дисперсный продукт - шлам, в к-ром концентрируются благородные и редкие металлы. Этот продукт специально перерабатывают в шламовом цикле. Анодные остатки (выход их 15-18% от массы анода) возвращают на переплавку в цикл огневого рафинирования.

При пирометаллургич. переработке медного концентрата извлекают до 96-98% меди и благородных металлов, однако степень извлечения сопутствующих элементов (S, Zn, Ni, Pb) гораздо ниже, a Fe полностью теряется со шлаком.

Многие проблемы пирометаллургич. произ-ва меди (экологическая из-за повыш. тепло-, пыле- и газовыделения, взры-воопасность в случае контакта расплава штейна с водой и др.) устраняются при использовании гидрометаллургич. технологии. Она включает: селективное выщелачивание меди из сырья, чаще всего р-ром H2SO4 или NH3; очистку р-ра от примесей и извлечение сопутствующих ценных элементов (Zn, Co, Ni, Cd и др.); выделение меди. При переработке бедных р-ров (0,5-12,0 г/л меди) используют цементацию на железном скрапе и экстракцию с послед.электрохим. осаждением меди. Из богатых р-ров (30-40 г/л меди) медь извлекают чаще электролизом или автоклавным осаждением водородом (127-197 °С, давление Н2 1,5-2,5 МПа). В последнем случае медь получают в форме порошка (>=99,6% меди). Гидрометаллургич. схемы эффективны при извлечении меди из бедных руд методами подземного, кучного, чанового выщелачивания, в т. ч. с использованием биохим. окисления сульфидов; остатки от выщелачивания смешанных руд обогащают флотацией. Рациональна переработка полиметаллич. концентратов, вторичного сырья, особенно при небольшом объеме произ-ва. В этом случае весьма перспективно автоклавное выщелачивание при повыш. т-рах (137-197 °С) и давлении кислородсодержащего газа-окислителя (давление О2 0,2-1,0 МПа), обеспечивающее значит.интенсификацию процесса, получение более чистых р-ров и элементной S при окислении сульфидов. Гидрометаллургич. схемы позволяют более комплексно использовать сырье, проще обеспечить экологич. и пром. санитарию. Внедрение их сдерживается из-за недостаточной интенсивности, повыш. эксплуатац. затрат и др.

    • Физические и химические свойства

Медь — золотисто-розовый пластичный металл, на воздухе быстро покрывается оксидной плёнкой, которая придаёт ей характерный интенсивный желтовато-красный оттенок. Тонкие плёнки меди на просвет имеют зеленовато-голубой цвет.

Медь образует кубическую гранецентрированную решётку, пространственная группа F m3m, a = 0,36150 нм, Z = 4.

Медь обладает высокой тепло- и электропроводностью (занимает второе место по электропроводности после серебра, удельная проводимость при 20 °C 55,5-58 МСм/м[4]). Имеет два стабильных изотопа — 63Cu и 65Cu, и несколько радиоактивных изотопов. Самый долгоживущий из них, 64Cu, имеет период полураспада 12,7 ч и два варианта распада с различными продуктами.

Существует ряд сплавов меди: латуни — с цинком, бронзы — с оловом и другими элементами, мельхиор — с никелем, баббиты — со свинцом и другие.

 

  • Применение

Широкое применение меди в пром-сти обусловлено рядом ее ценныхсв-в и прежде всего высокой электрич. проводимостью, пластичностью, теплопроводностью. Более 50% меди используется для изготовления проводов, кабелей, шин, токопроводящих частей электрич. установок. Из меди изготовляют теплообменную аппаратуру (вакуум-испарители, подогреватели, холодильники). Более 30% меди применяют в виде сплавов, важнейшие из к-рых - бронзы, латуни, мельхиор и др. (см. Меди сплавы). Медь и ее сплавы используют также для изготовления художеств.изделий. В виде фольги медь применяют в радиоэлектронике. Значит.кол-во меди(10-12%) применяют в виде разл. соед. в медицине (антисептич. и вяжущие ср-ва), для изготовления инсектофунгицидов, в качестве медных удобрений, пигментов, катализаторов, в гальванотехнике и т.д.

Мировоепроиз-во меди (без СССР) ок. 7,5 млн. т, в т.ч. из вторичного сырья-1,15 млн. т/год (1985). Осн. страны-производители рафинированной меди (1985): США (1,7 млн. т), Япония (1,1), Чили (0,9), Канада (0,8), Замбия (0,53), Заир (0,5).

Все соли меди ядовиты; раздражают слизистые, поражают желудочно-кишечный тракт, вызывают тошноту, рвоту, заболевание печени и др. При вдыхании пыли меди развивается хронич. отравление. ПДК для аэрозолей меди 1 мг/м3, питьевой воды 1,0 мг/л, для рыбных водоемов 0,01 мг/л, в сточных водах до биол. очистки 0,5 мг/л.

Медь известна человечеству с глубокой древности. Медь и ее сплавы сыграли заметную роль в развитии цивилизации.

 

    • Биологическая роль

Медь является необходимым элементом для всех высших растений и животных. В токе крови медь переносится главным образом белком церулоплазмином. После усваивания меди кишечником она транспортируется к печени с помощью альбумина. Медь встречается в большом количестве ферментов, например, в цитохром-с-оксидазе, в содержащем медь и цинк ферменте супероксид дисмутазе, и в переносящем кислород белке гемоцианине. В крови большинства моллюсков и членистоногих медь используется вместо железа для транспорта кислорода.

Предполагается, что медь и цинк конкурируют друг с другом в процессе усваивания в пищеварительном тракте, поэтому избыток одного из этих элементов в пище может вызвать недостаток другого элемента. Здоровому взрослому человеку необходимо поступление меди в количестве 0,9 мг в день.

Медь является необходимым элементом для всех высших растений и животных. В токе крови медь переносится главным образом белком церулоплазмином. После усваивания меди кишечником она транспортируется к печени с помощью альбумина. Медь встречается в большом количестве ферментов, например, в цитохром-с-оксидазе, в содержащем медь и цинк ферменте супероксид дисмутазе, и в переносящем кислород белке гемоцианине. В крови большинства моллюсков и членистоногих медь используется вместо железа для транспорта кислорода.

Предполагается, что медь и цинк конкурируют друг с другом в процессе усваивания в пищеварительном тракте, поэтому избыток одного из этих элементов в пище может вызвать недостаток другого элемента. Здоровому взрослому человеку необходимо поступление меди в количестве 0,9 мг в день.

Бактерицидные свойства меди и её сплавов были известны человеку давно. В 2008 году после длительных исследований Федеральное Агентство по Охране Окружающей Среды США (US EPA) официально присвоило меди и нескольким сплавам меди статус веществ с бактерицидной поверхностью[9] (агентство подчёркивает, что использование меди в качестве бактерицидного вещества может дополнять, но не должно заменять стандартную практику инфекционного контроля). Особенно выражено бактерицидное действие поверхностей из меди (и ее сплавов) проявляется в отношении метициллин-устойчивого штамма стафилококка золотистого, известного как «супермикроб» MRSA. Летом 2009 была установлена роль меди и сплавов меди в инактивировании вируса гриппа A/H1N1 (т. н. «свиной грипп»)

Ионы меди придают излишку меди в воде отчётливый «металлический вкус». У разных людей порог органолептического определения меди в воде составляет приблизительно 2-10 мг/л. Естественная способность к такому определению повышенного содержания меди в воде является природным механизмом защиты от приёма внутрь воды с излишним содержанием меди.

 

 

 

 

 

 

 

 

 


Информация о работе Свойства S, P, D элементов, имеющих биологическое значение