Экономико-математические модели управления запасами

Автор работы: Пользователь скрыл имя, 24 Марта 2014 в 03:47, курсовая работа

Описание работы

Целью данной курсовой работы является изучение моделей управления запасами. Для достижения данной цели были рассмотрены детерминированные модели управления запасами.

Содержание работы

ВВЕДЕНИЕ…………………………………………………………………..………4
1 ЭКОНОМИКО-МАТЕМАТИЧЕСКИЕ МОДЕЛИ УПРАВЛЕНИЯ ЗАПАСАМИ………………………………………………………………….……...6
1.1 Основные понятия теории управления запасами и ее элементы…………….6
1.2 Стратегия управления запасами……………………….…………………...…..8
1.3 Классификация моделей управления запасами................................................11
2 ДЕТЕРМИНИРОВАННЫЕ МОДЕЛИ……………………………….………....15
2.1 Модель Уилсона………………………………………….……………...……..15
2.2 Модель с конечной интенсивностью поступления заказа…………………...17
2.3 Модель с учетом неудовлетворенных требований……….………………..…18
2.4 Модель с определением точки заказа…………………………………………20
2.5 Многономенклатурные модели………………………………………………..21
ЗАКЛЮЧЕНИЕ…………………………………………………………….….……25
СПИСОК ИСПОЛЬЗУЕМОЙ ЛИТЕРАТУРЫ………………………….…….….26

Файлы: 1 файл

Курсовая ЭММ 1.doc

— 511.50 Кб (Скачать файл)

Функция затрат образует показатель эффективности принятой стратегии и учитывает следующие издержки:

  • расходы на хранение;
  • транспортные расходы и затраты, связанные с заказом каждой новой партии;
  • затраты на штрафы.

Иногда в минимизируемую функцию включаются доходы, полученные от продажи остатков запаса в конце каждого периода. В некоторых случаях ставится задача максимизации доходов.

Ограничения в задачах управления запасами могут быть различного характера. Известны следующие виды ограничений:

  • по максимальному объему (весу, стоимости) запасов;
  • по средней стоимости;
  • по числу поставок в заданном интервале времени;
  • по максимальному объему (весу, стоимости) поставки или кратности этого объема некоторой минимальной величине (целое число стандартных «упаковок» - вагонов, бочек, коробок);
  • по доле требований, удовлетворяемых из наличного запаса (без дополнительных задержек).

Необходимо отметить, что область применения теории управления запасами отнюдь не ограничивается складскими операциями. Под запасами можно подразумевать: наличие товара; рабочую силу, планируемую для выполнения конкретного задания; объем информации в базе данных; численность персонала данной квалификации и т.д. Таким образом, при переосмысливании элементов модели методами теории управления запасами может быть решен широкий круг задач оптимального планирования.

 

2 ДЕТЕРМИНИРОВАННЫЕ МОДЕЛИ

Чрезвычайно трудно построить обобщенную модель управления запасами, которая учитывала бы все разновидности условий, наблюдаемых в реальных системах. Но если бы и удалось построить достаточно универсальную модель, она едва ли оказалась аналитически разрешимой. Представление в этом разделе модели соответствуют некоторым системам  управления запасами. Маловероятно, что эти модели могут точно подойти для реальных условий, однако они приведены с целью различных подходов к решению некоторых конкретных задач управления запасами.

В этом разделе обсуждается пять моделей. Большинство из них однопродуктовые, и только в одной из них учитывается влияние нескольких «конкурирующих» видов продукции. Основное различие между моделями определяется допущением о характера спроса (статический или динамический). Важным фактором с точки зрения формулировки и решения задачи является  также вид функции затрат. Используются различные методы решения. Эти примеры наглядно показывают, что при решении задач управления запасами следует применять различные методы оптимизации.

 

2.1 Модель Уилсона

Рассмотрение моделей управления запасами начнем с простейшего случая.

Модель Уилсона, в определенном смысле классическая, основана на выборе такого фиксированного размера заказываемой партии, который минимизирует расходы на оформление заказа, доставку и хранение товара.

Экономическая партия товара вычисляется при следующих упрощениях реальной ситуации:

  • уровень запасов убывает с постоянной интенсивностью, и в тот момент, когда все запасы товара исчерпаны, подается заказ на поставку новой партии;
  • выполнение заказа осуществляется мгновенно, т. е. время доставки равно нулю и уровень запасов восстанавливается до значения равного q;
  • накладные расходы, связанные с размещением заказа и поставкой товара, не зависят от объема партии и равны постоянной величине;
  • ежедневная стоимость хранения единицы товара равна постоянной величине.

Данная политика проводимая складом характерна для тех случаев, когда интенсивность потребления запасов близка к постоянной величине, а поставки производятся регулярно.

Простейшая модель оптимальной партии поставки строится при следующих предложениях: спрос v в единицу времени является постоянным; заказанная партия доставляется одновременно; дефицит недопустим; затраты K на организацию поставки постоянны и не зависят от величины q партии; издержки содержания единицы продукции в течение единицы времени составляют S. На рисунке 4 показана динамика изменения уровня I запасов.

Рисунок 4 – Динамика изменения уровня запасов

 

Уровень запаса снижается равномерно от q до 0, после чего подается заказ на доставку новой партии величиной q. Заказ выполняется мгновенно и уровень запаса восстанавливается до величины q. Интервал времени длиной r между поставками называется циклом. Издержки в течение цикла Lц состоят из стоимости заказа K и затрат на содержание запаса, которые пропорциональны средней величине запаса I1 = q/2 и длине цикла r = q/v,

Разделив это выражение на длину цикла q, получим издержки в единицу времени


Оптимальный размер партии определяется из уравнения (необходимый признак экстремума).

Отсюда находим оптимальный размер q* партии:


Так как d2L/dq2 >0 (достаточный признак экстремума), то для всех q>0 выражение (2.2) является минимумом функции затрат (2.1). Уравнение (2.2) известно под многими названиями. Его называют формулой наиболее экономной величины заказа, формулой Уилсона, формулой квадратного корня. Чтобы найти оптимальные параметры работы системы, подставляем значение q* в соответствующие выражение. Получаем, что оптимальная стратегия предусматривает заказ q* через каждые

единиц времени. Наименьшие суммарные затраты работы системы в единицу времени

 

Пример

Жидкие продукты нескольких видов разливаются в пакеты на одной линии упаковки. Затраты на подготовительно-заключительные операции составляют 700 ден. ед., потребность в продуктах составляет 140000 л в месяц, стоимость хранения 1 л в течение месяца – 4 ден. ед. Определить оптимальные параметры системы. Сравнить минимальные затраты с затратами при действующей системе разлива одного продукта в течение трех дней.

Решение. Оптимальные параметры модели Уилсона:


При действующей системе rд = 3 (дня) = 0,1 (месяца), qд = rд v = 14000 (литров). Величину затрат при действующей системе найдем по формуле (2.1):

 

2.2 Модель с конечной интенсивностью поступления заказа

Пусть заказанная партия поступает с интенсивностью u единиц в единицу времени. Очевидно система может работать без дефицита, если интенсивность поставок u превосходит интенсивность потребления v. Таким образом рассматривается система типа заводского склада, куда продукция, произведенная одним цехом, поступает с определенной интенсивностью и используется в производстве другого цеха. Изменение уровня запаса для рассматриваемого случая изображено на рисунке 5. В течение времени r1 запас одновременно и поступает и расходуется, это время накопления запаса. В течение r2 запас только расходуется. Длина цикла r = r1 + r2 . Учитывая, что максимальный наличный запас Iм = q(1-v/u) издержки системы в единицу времени составят

Рисунок 5 – Динамика изменения уровня запасов

 

Оптимальные параметры работы системы определяются обычным образом. Величины оптимальной партии


оптимальный период возобновления заказа


и его составляющие

минимальные издержки в единицу времени


 

В случае, когда интенсивность поставки значительно больше интенсивности потребления v/u → 0, то (2.3), (2.4), (2.5) становятся параметрами обычной системы Уилсона.

 

2.3 Модель с  учетом неудовлетворенных требований

В некоторых случаях, когда потери из-за дефицита сравнимы с издержками хранения, дефицит допускается. Пусть требования, поступающие в момент отсутствия запаса, берутся на учет. Обозначим через y максимальную величину задолженного спроса (рисунок 6). Максимальная величина наличного запаса  
Y = q-y расходуется за время r1 (время существования наличного запаса), а затем поступающие требования ставятся на учет в течение времени r2 (время дефицита). При поступлении очередной партии в первую очередь удовлетворяется задолженый спрос, а затем пополняется запас. Убытки, связанные с дефицитом единицы запаса в единицу времени, составляют d. Затраты на хранение продукции пропорциональны средней величине  
запаса (q-y)/2 и времени его существования (q-y)/v; аналогично убытки от дефицита пропорциональны средней величине дефицита y/2 и времени его существования y/v. Средние издержки работы системы в течение цикла, включающие затраты на размещение заказа, содержание запаса и потери от дефицита

Рисунок 6 – Динамика изменения уровня запасов

 

Разделим издержки цикла на его величину r = q/v и получим издержки работы системы в единицу времени

Откуда обычным способом находим


Подставив значения q* и y* в соответствующие выражения, найдем другие оптимальные параметры системы



В более сложных моделях управления запасами сохраняется общий подход: строится функция затрат на приобретение запаса, строится функция потерь при хранении запаса и при его нехватке, находится уравнение запасами, при котором минимизируются затраты и потери.

 

2.4 Модель с определением точки заказа

В реальных ситуациях следует учитывать время выполнения заказа Q. Для обеспечения бесперебойного снабжения заказ должен подаваться в момент, когда уровень запаса достаточен для удовлетворения потребности на время выполнения заказа. Этот уровень называется точкой возобновления заказа и обозначается j. Для систем, в которых дефицит не допускается, заказ должен размещаться в момент, когда величина наличного запаса равна

где [ ] – целая часть числа.

Для обеспечения бездефицитной работы необходим минимальный начальный запас I0, величина которого I0 = Qv. Пусть I – фактический начальный запас. Для непрерывной работы необходимо, чтобы I >= Qv. Время потребления начального запаса равно I/v. Чтобы заказанная партия была доставлена не позже полного расхода начального запаса, ее нужно разместить в момент T0 =  I/v – Q. В общем случае заказы нужно размещать в моменты

 

В системе с конечной интенсивностью поступления заказа при определении оптимальной точки рассматриваются два случая:

Для системы с учетом неудовлетворенных требований точка заказа определяется по формуле

 

и может быть отрицательной величиной. Это означает, что заявки на пополнение запаса должны посылаться, когда величина дефицита  
составляет [j].

 

2.5 Многономенклатурные модели

До сих пор мы считали, что каждый вид товара хранится на складе независимо от остальных. Это допущение будет справедливым, если не налагаются ограничений на размер капиталовложений в запасы, на емкость складских помещений и т. п. Однако для многих случаев на практике имеют место указанные ограничения, и необходимы изменения размеров заказов по сравнению с какой-либо индивидуальной политикой, чтобы имелось соответствие наличным ресурсам. Кроме того, могут быть наложены ограничения на пропускную способность путей доставки и отпуска товаров со склада.

Складские системы промышленных предприятий содержат от нескольких десятков до нескольких тысяч номенклатур. Следовательно, возникает необходимость рассмотрения задач управления многономенклатурными запасами. Многие специалисты придерживаются мнения, что оптимизация должна проводиться лишь по 5-10% номенклатур, суммарная потребность в которых в стоимостном выражении составляет 60-70%.

Раздельная оптимизация. При отсутствии взаимодействия между запасами различных видов продукции затраты L в единицу времени для системы, включающей N видов хранимой продукции вычисляются по формуле


Откуда, используя необходимый признак экстремума, находим

 

Минимальные издержки в единицу времени составляют

Пусть общая складская площадь ограничена величиной f. Ограничение на складские площади имеет вид:



где fi – площадь, необходимая для хранения единицы i-го вида продукции, qi – величина партии i –го вида продукции.

В выражении (2.7) обычно вводится нормировочный множитель h для учета того фактора, что запасы отдельных номенклатур могут поступать независимо друг от друга. Если запасы всех номенклатур пополняются одновременно, то в это время запас и занятая им площадь оказываются максимальными и h=1. Полагая h=1/2, допускаем, что запасы всех видов продукции пополняются в разное время, а уровень запасов и занятая ими площадь является средней. Маловероятно, что занятая площадь окажется много меньше половины имеющейся, поэтому


С учетом сказанного ограничение (2.7) запишется так:


Для определения экстремума функции (2.6) при наличии ограничения (2.8) применим метод множителей Лагранжа. Составим дополнительную функцию Лагранжа, которая состоит из двух слагаемых. Первое слагаемое – это функция, экстремальное (максимальное или минимальное) значение которой необходимо определить. В нашей задаче – это суммарные издержки в единицу времени, которые надо минимизировать. Второе слагаемое – это разность между левой и правой частью ограничивающего условия. Умноженная на неопределенный множитель  u, которому можно придать любое произвольное значение. Если ограничение является несущественным,


то о                        - отрицательная величина, а*u = 0. Возможны два случая:

Это обеспечивает возможность составления функции Лагранжа.


 

Поскольку выражение                         в любом случае равно нулю, то функция

 

суммарных затрат в единицу времени будет иметь вид

Продифференцируем эту функцию по неизвестным параметрам qi и u и приравняем частные производные к нулю

Откуда выводим систему из N+1 уравнения с N+1 неизвестной q1,…qn, u


Неопределенный множитель Лагранжа в данном случае имеет конкретный экономический смысл. Он показывает, насколько можно сократить минимальные издержки функционирования системы в единицу времени, увеличив складские площади на единицу.

Аналогично решается задача, если ограничения накладываются на величину оборотных средств A, вложенных в запасы. Пусть ai - стоимость единицы материала i – го вида, тогда ограничение имеет вид:

Информация о работе Экономико-математические модели управления запасами