Автор работы: Пользователь скрыл имя, 03 Октября 2013 в 20:26, курсовая работа
Требуется:
Найти параметры уравнения линейной регрессии, дать экономическую интерпретацию углового коэффициента регрессии.
Вычислить остатки; найти остаточную сумму квадратов; определить стандартную ошибку регрессии; построить график остатков.
Проверить выполнение предпосылок метода наименьших квадратов.
Осуществить проверку значимости параметров уравнения регрессии с помощью t-критерия Стьюдента (уровень значимости a=0,05).
Вычислить коэффициент детерминации R2; проверить значимость уравнения регрессии с помощью F-критерия Фишера (уровень значимости a=0,05); найти среднюю относительную ошибку аппроксимации. Сделать вывод о качестве модели.
ЗАДАЧА 1
По предприятиям легкой промышленности региона получена информация, характеризующая зависимость объема выпускаемой продукции (Y, млн. руб.) от объема капиталовложений (X, млн. руб.):
№ предприятия |
X |
Y |
1 |
12 |
21 |
2 |
4 |
10 |
3 |
18 |
26 |
4 |
27 |
33 |
5 |
26 |
34 |
6 |
29 |
37 |
7 |
1 |
9 |
8 |
13 |
21 |
9 |
26 |
32 |
10 |
5 |
14 |
Требуется:
Привести графики построенных уравнений регрессии.
РЕШЕНИЕ
Для решения задачи используется табличный процессор EXCEL.
1. С помощью надстройки «Анализ данных» EXCEL проводим регрессионный анализ и определяем параметры уравнения линейной регрессии (меню «Сервис» ® «Анализ данных…» ® «Регрессия»):
(Для копирования снимка окна в буфер обмена данных WINDOWS используется комбинация клавиш Alt+Print Screen.)
В результате этого уравнение регрессии будет иметь вид:
Угловой коэффициент b1=0,968 является по своей сути средним абсолютным приростом. Его значение показывает, что при увеличении объема капиталовложений X на 1 млн. руб. объем выпускаемой продукции Y возрастает в среднем на 0,968 млн. руб.
2. При проведении регрессионного анализа в EXCEL одновременно были определены остатки регрессии (i=1, 2, …, n, где n=10 — число наблюдений значений переменных X и Y) (см. «Вывод остатка» в прил. 1) и рассчитана остаточная сумма квадратов
(см. «Дисперсионный анализ» в прил. 1).
Стандартная ошибка линейной парной регрессии Sрег определена там же:
(см. «Регрессионную статистику» в прил. 1), где p=1 — число факторов в регрессионной модели.
График остатков ei от предсказанных уравнением регрессии значений результата (i=1, 2, …, n) строим с помощью диаграммы EXCEL. Предварительно в «Выводе остатка» прил. 1 выделяются блоки ячеек «Предсказанное Y» и «Остатки» вместе с заголовками, а затем выбирается пункт меню «Вставка» ® «Диаграмма…» ® «Точечная»:
График остатков приведен в прил. 2.
3. Проверим выполнение предпосылок обычного метода наименьших квадратов.
1) Случайный характер остатков. Визуальный анализ графика остатков не выявляет в них какой-либо явной закономерности.
Проверим исходные данные на наличие аномальных наблюдений объема выпускаемой продукции Y (выбросов). С этой целю сравним абсолютные величины стандартизированных остатков (см. «Вывод остатка» в прил. 1) с табличным значением t-критерия Стьюдента для уровня значимости a=0,05 и числа степеней свободы остатка регрессии , которое составляет tтаб=2,306.
Видно, что ни один из стандартизированных остатков не превышает по абсолютной величине табличное значение t-критерия Стьюдента. Это свидетельствует об отсутствии выбросов.
2) Нулевая средняя величина остатков. Данная предпосылка всегда выполняется для линейных моделей со свободным коэффициентом b0, параметры которых оцениваются обычным методом наименьших квадратов. В нашей модели алгебраическая сумма остатков и, следовательно, их среднее, равны нулю: (см. прил. 1).
Для вычисления суммы и среднего значений остатков использовались встроенные функции EXCEL «СУММ» и «СРЗНАЧ».
3) Одинаковая дисперсия (гомоскедастичность) остатков. Выполнение данной предпосылки проверим методом Глейзера в предположении линейной зависимости среднего квадратического отклонения возмущений от предсказанных уравнением регрессии значений результата (i=1, 2, …, n). Для этого рассчитывается коэффициент корреляции между абсолютными величинами остатков и (i=1, 2, …, n) с помощью выражения, составленного из встроенных функций:
=КОРРЕЛ(ABS(«Остатки»);«Предск
Коэффициент корреляции оказался равным (см. прил. 1).
Критическое значение коэффициента корреляции для уровня значимости a=0,05 и числа степеней свободы составляет rкр=0,632.
Так как коэффициент корреляции не превышает по абсолютной величине критическое значение, то статистическая гипотеза об одинаковой дисперсии остатков не отклоняется на уровне значимости a=0,05.
4) Отсутствие автокорреляции в остатках. Выполнение данной предпосылки проверяем методом Дарбина–Уотсона. Предварительно ряд остатков упорядочивается в зависимости от последовательно возрастающих значений результата Y, предсказанных уравнением регрессии. Для этой цели в «Выводе остатка» прил. 1 выделяется любая ячейка в столбце «Предсказанное Y», и на панели инструментов нажимается кнопка « » («Сортировка по возрастанию»). По упорядоченному ряду остатков рассчитываем d-статистику Дарбина–Уотсона
Для расчета d-статистики использовалось выражение, составленное из встроенных функций EXCEL:
=СУММКВРАЗН(«Остатки 2, …, n»; «Остатки 1, …, n–1»)/СУММКВ(«Остатки 1, …,n»)
Критические значения d-статистики для числа наблюдений n=10, числа факторов p=1 и уровня значимости a=0,05 составляют: d1=0,88; d2=1,32.
Так как выполняется условие
статистическая гипотеза об отсутствии автокорреляции в остатках не отклоняется на уровне значимости a=0,05.
Проверим отсутствие автокорреляции в остатках также и по коэффициенту автокорреляции остатков первого порядка
(ряд остатков упорядочен в той же самой последовательности).
Для расчета коэффициента автокорреляции использовалось выражение, составленное из встроенных функций:
=СУММПРОИЗВ(«Остатки 2, …, n»; «Остатки 1, …, n–1»)/СУММКВ(«Остатки 1, …,n»)
Критическое значение коэффициента автокорреляции для числа наблюдений n=10 и уровня значимости a=0,05 составляет r(1)кр=0,632. Так как коэффициент автокорреляции остатков первого порядка не превышает по абсолютной величине критическое значение, то это еще раз указывает на отсутствие автокорреляции в остатках.
5) Нормальный закон распределения остатков. Выполнение этой предпосылки проверяем с помощью R/S-критерия, определяемого по формуле
где emax=1,27; emin=(–1,99) — наибольший и наименьший остатки соответственно (определялись с помощью встроенных функций «МАКС» и «МИН»); — стандартное отклонение ряда остатков (определено с помощью встроенной функции «СТАНДОТКЛОН») (см. прил. 1).
Критические границы R/S-критерия для числа наблюдений n=10 и уровня значимости a=0,05 имеют значения: (R/S)1=2,67 и (R/S)2=3,69.
Так как расчетное значение R/S-критерия попадает в интервал между критическими границами, то статистическая гипотеза о нормальном законе распределения остатков не отклоняется на уровне значимости a=0,05.
Проведенная проверка показала, что выполняются все пять предпосылок обычного метода наименьших квадратов. Это свидетельствует об адекватности регрессионной модели исследуемому экономическому явлению.
4. Проверим статистическую значимость коэффициентов b0 и b1 уравнения регрессии. Табличное значение t-критерия Стьюдента для уровня значимости a=0,05 и числа степеней свободы остатка линейной парной регрессии составляет tтаб=2,306.
t-статистики коэффициентов
были определены при проведении регрессионного анализа в EXCEL и имеют следующие значения: tb0»11,41; tb1»25,81 (см. прил. 1). Анализ этих значений показывает, что по абсолютной величине все они превышают табличное значение t-критерия Стьюдента. Это свидетельствует о статистической значимости обоих коэффициентов. На то же самое обстоятельство указывают и вероятности случайного формирования коэффициентов b0 и b1, которые ниже допустимого уровня значимости a=0,05 (см. «P-Значение»).
Статистическая значимость углового коэффициента b1 дает основание говорить о существенном (значимом) влиянии изменения объема капиталовложений X на изменение объема выпускаемой продукции Y.
5. Коэффициент детерминации R2 линейной модели также был определен при проведении регрессионного анализа в EXCEL:
(см. «Регрессионную статистику» в прил. 1).
Значение R2 показывает, что линейная модель объясняет 99 % вариации объема выпускаемой продукции Y.
F-статистика линейной модели имеет значение
(см. «Дисперсионный анализ» в прил. 1).
Табличное значение F-критерия Фишера для уровня значимости a=0,05 и чисел степеней свободы числителя (регрессии) и знаменателя (остатка) составляет Fтаб=5,32. Так как F-статистика превышает табличное значение F-критерия Фишера, то это свидетельствует о статистической значимости уравнения регрессии в целом. На этот же факт указывает и то, что вероятность случайного формирования уравнения регрессии в том виде, в каком оно получено, составляет 5,45×10-9 (см. «Значимость F» в «Дисперсионном анализе» прил. 1), что ниже допустимого уровня значимости a=0,05.
Среднюю относительную ошибку аппроксимации определяем по приближенной формуле
где млн. руб. — средний объем выпускаемой продукции, определенный с помощью встроенной функции «СРЗНАЧ» (см. «Исходные данные» в прил. 1).
Значение Еотн показывает, что предсказанные уравнением регрессии значения объема выпускаемой продукции Y отличаются от фактических значений в среднем на 4,0 %. Линейная модель имеет хорошую точность.
По результатам проверок, проведенных в пунктах 3 — 5, можно сделать вывод о достаточно хорошем качестве линейной модели и возможности ее использования для целей анализа и прогнозирования объема выпускаемой продукции.
6. Спрогнозируем объем выпускаемой продукции Y, если прогнозное значение объема капиталовложений X составит 80 % от своего максимального значения в исходных данных:
Среднее прогнозируемое значение объема выпускаемой продукции (точечный прогноз) равно
Стандартная ошибка прогноза фактического значения объема выпускаемой продукции y0 рассчитывается по формуле
где млн. руб. — средний объем капиталовложений; млн. руб. — стандартное отклонение объема капиталовложений (определены с помощью встроенных функций «СРЗНАЧ» и «СТАНДОТКЛОН») (см. «Исходные данные» в прил. 1).
Интервальный прогноз фактического значения объема выпускаемой продукции y0 с надежностью (доверительной вероятностью) g=0,9 (уровень значимости a=0,1) имеет вид: