Автор работы: Пользователь скрыл имя, 03 Октября 2013 в 20:26, курсовая работа
Требуется:
Найти параметры уравнения линейной регрессии, дать экономическую интерпретацию углового коэффициента регрессии.
Вычислить остатки; найти остаточную сумму квадратов; определить стандартную ошибку регрессии; построить график остатков.
Проверить выполнение предпосылок метода наименьших квадратов.
Осуществить проверку значимости параметров уравнения регрессии с помощью t-критерия Стьюдента (уровень значимости a=0,05).
Вычислить коэффициент детерминации R2; проверить значимость уравнения регрессии с помощью F-критерия Фишера (уровень значимости a=0,05); найти среднюю относительную ошибку аппроксимации. Сделать вывод о качестве модели.
где tтаб=1,860 — табличное значение t-критерия Стьюдента при уровне значимости a=0,1 и числе степеней свободы .
Таким образом, объем выпускаемой продукции Y с вероятностью 90 % будет находиться в интервале от 28,25 до 32,91 млн. руб.
7. График, на котором изображены фактические и предсказанные уравнением регрессии значения Y строим с помощью диаграммы EXCEL (меню «Вставка» ® «Диаграмма…» ® «Точечная»). Далее строим линию линейного тренда (меню «Диаграмма» ® «Добавить линию тренда…» ® «Линейная»), и устанавливаем вывод на диаграмме уравнения регрессии и коэффициента детерминации R2:
Точки точечного и интервального прогнозов наносим на график вручную (прил. 3).
8. Логарифмическую, степенную и показательную модели также строим с помощью диаграммы EXCEL (меню «Вставка» ® «Диаграмма…» ® «Точечная»). Далее последовательно строим соответствующие линии тренда (меню «Диаграмма» ® «Добавить линию тренда…»), и устанавливаем вывод на диаграмме уравнения регрессии и коэффициента детерминации R2:
Графики линий регрессии, уравнения регрессии и значения R2 приведены в прил. 4. Рассмотрим последовательно каждую модель.
1) Логарифмическая модель:
Значение параметра b1=8,6672 показывает, что при увеличении объема капиталовложений X на 1 % объем выпускаемой продукции Y возрастает в среднем на млн. руб.
Коэффициент детерминации R2»0,8562 показывает, что логарифмическая модель объясняет 85,62 % вариации объема выпускаемой продукции Y.
F-статистика Фишера логарифмической модели определяется через коэффициент детерминации R2 по формуле
Табличное значение F-критерия Фишера одинаково как для линейной, так и для всех нелинейных моделей, которые здесь строятся (Fтаб=5,32). Так как F-статистика превышает табличное значение F-критерия, то это свидетельствует о статистической значимости уравнения логарифмической регрессии.
Стандартная ошибка логарифмической регрессии также рассчитывается через коэффициент детерминации R2 по формуле
где млн. руб. — стандартное отклонение объема выпускаемой продукции, определенное с помощью встроенной функции «СТАНДОТКЛОН» (см. «Исходные данные» в прил. 1).
Среднюю относительную ошибку аппроксимации определяем по приближенной формуле
Предсказанные уравнением логарифмической регрессии значения объема выпускаемой продукции Y отличаются от фактических значений в среднем на 13,97 %. Логарифмическая модель имеет хорошую точность.
2) Степенная модель:
Показатель степени b1=0,4531 является средним коэффициентом эластичности. Его значение показывает, что при увеличении объема капиталовложений X на 1 % объем выпускаемой продукции Y возрастает в среднем на 0,4531 %.
Коэффициент детерминации R2»0,9277 показывает, что степенная модель объясняет 92,77 % вариации объема выпускаемой продукции Y.
F-статистика степенной модели
также превышает табличное значение F-критерия Фишера (Fтаб=5,32), что указывает на статистическую значимость уравнения степенной регрессии.
Стандартная ошибка степенной регрессии равна
Средняя относительная ошибка аппроксимации имеет значение
Предсказанные уравнением степенной регрессии значения объема выпускаемой продукции Y отличаются от фактических значений в среднем на 9,92 %. Степенная модель имеет хорошую точность.
3) Показательная (экспоненциальная) модель:
где е=2,718… — основание натуральных логарифмов; — функция экспоненты (в EXCEL встроенная функция «EXP»).
Параметр b1=1,0474 является средним коэффициентом роста. Его значение показывает, что при увеличении объема капиталовложений X на 1 млн. руб. объем выпускаемой продукции Y возрастает в среднем в 1,0474 раза, то есть на 4,7 %.
Коэффициент детерминации R2»0,9413 показывает, что показательная модель объясняет 94,13 % вариации объема выпускаемой продукции Y.
F-статистика показательной модели
превышает табличное значение F-критерия Фишера (Fтаб=5,32), что свидетельствует о статистической значимости уравнения показательной регрессии.
Стандартная ошибка показательной регрессии:
Средняя относительная ошибка аппроксимации:
Предсказанные уравнением показательной регрессии значения объема выпускаемой продукции Y отличаются от фактических значений в среднем на 8,95 %. Показательная модель имеет хорошую точность.
Сравнивая между собой коэффициенты детерминации R2 четырех построенных моделей (линейной, логарифмической, степенной и показательной), можно придти к выводу, что лучшей моделью является логарифмическая модель, так как она имеет самое большое значение R2.
ПРИЛОЖЕНИЕ: компьютерные распечатки на 4 листах.
ЗАДАЧА 2
Задача 2а и 2б
Номер варианта |
Номер уравнения |
Задача 2а |
Задача 2б | ||||||||||||
переменные |
переменные | ||||||||||||||
у1 |
у2 |
у3 |
х1 |
х2 |
х3 |
x4 |
у1 |
у2 |
у3 |
х1 |
х2 |
х3 |
x4 | ||
9 |
1 |
-1 |
b12 |
0 |
a11 |
a12 |
a13 |
0 |
-1 |
b12 |
b13 |
a11 |
a12 |
0 |
0 |
2 |
0 |
-1 |
b23 |
a21 |
0 |
a23 |
a24 |
b21 |
-1 |
b23 |
0 |
0 |
a23 |
a24 | |
3 |
0 |
b32 |
-1 |
a31 |
a32 |
a33 |
0 |
b31 |
b32 |
-1 |
0 |
0 |
a33 |
a34 |
РЕШЕНИЕ
Задача 2а
Используя матрицу коэффициентов модели в исходных данных, записываем систему одновременных уравнений регрессии в структурной форме:
Проверим каждое уравнение системы на выполнение необходимого и достаточного условия идентификации.
В первом уравнении две эндогенные переменные: y1 и y2 (H=2). В нем отсутствует одна экзогенные переменные x2 (D=1). Необходимое условие идентификации выполнено. Для проверки на достаточное условие составим матрицу из коэффициентов при переменных у3 и x4, отсутствующих в данном уравнении, но имеющихся в системе:
Уравнения, из которых взяты коэффициенты при переменных |
Переменные | |
у3 |
x4 | |
2 |
b23 |
a24 |
3 |
-1 |
0 |
Определитель данной матрицы не равен нулю:
а ее ранг равен 2. В заданной системе уравнений две эндогенные переменные — y1 и y2 . Так как ранг матрицы не меньше, чем количество эндогенных переменных в системе без одного, то достаточное условие идентификации для данного уравнения выполнено. Первое уравнение считается идентифицируемым.
Во втором уравнении две эндогенные переменные: y2 и y3 (H=2). В нем отсутствует одна экзогенная переменная x2 (D=1). Необходимое условие идентификации выполнено. Составим матрицу из коэффициентов при переменных y1 и x3, которые отсутствуют во втором уравнении:
Уравнения, из которых взяты коэффициенты при переменных |
Переменные | |
y1 |
x3 | |
1 |
-1 |
a13 |
3 |
0 |
a33 |
Определитель данной матрицы не равен нулю:
а ее ранг равен 2. Достаточное условие идентификации выполнено, и второе уравнение считается идентифицируемым.
В третьем уравнении две эндогенные переменные: y2 и y3 (H=2). В нем отсутствует экзогенные переменные x4 (D=1). Необходимое условие идентификации выполнено. Составим матрицу из коэффициентов при переменных х4 и у1, которые отсутствуют в третьем уравнении:
Уравнения, из которых взяты коэффициенты при переменных |
Переменные | |
у1 |
x4 | |
1 |
-1 |
0 |
2 |
0 |
a24 |
Определитель данной матрицы равен
а ее ранг — 2. Значит достаточное условие идентификации выполнено, и третье уравнение можно считать идентифицируемым.
Таким образом, все три уравнения заданной системы идентифицируемы, а значит, идентифицируема и вся система в целом.
Задача 2б
Используя матрицу коэффициентов модели в исходных данных, записываем систему одновременных уравнений регрессии в структурной форме:
Проверим каждое уравнение системы на выполнение необходимого и достаточного условия идентификации.
В первом уравнении три эндогенные переменные: y1, y2 и y3 (H=3). В нем отсутствуют экзогенные переменные x3 и x4 (D=2). Необходимое условие идентификации выполнено. Для проверки на достаточное условие составим матрицу из коэффициентов при переменных x3 и x4, отсутствующих в данном уравнении, но имеющихся в системе:
Уравнения, из которых взяты коэффициенты при переменных |
Переменные | |
x3 |
x4 | |
2 |
a23 |
a24 |
3 |
a33 |
a34 |
Определитель матрицы не равен нулю:
а ее ранг матрицы равен 2. В заданной системе уравнений три эндогенные переменные — y1, y2 и y3. Если , то это означает, что достаточное условие идентификации для данного уравнения выполнено. Первое уравнение считается идентифицируемым.
Во втором уравнении три эндогенные переменные: y1, y2 и y3 (H=3). В нем отсутствует экзогенные переменные x1 и x2 (D=2). Необходимое условие идентификации выполнено. Для проверки на достаточное условие составим матрицу из коэффициентов при переменных x1 и x2, отсутствующих в данном уравнении, но имеющихся в системе:
Уравнения, из которых взяты коэффициенты при переменных |
Переменные | |
x1 |
x2 | |
1 |
a11 |
a12 |
3 |
0 |
0 |
Определитель матрицы не равен нулю: