Автор работы: Пользователь скрыл имя, 09 Июня 2013 в 15:26, курсовая работа
Основной целью работы является исследование биотехнологических процессов в пищевой промышленности.
Задачи работы. На основе литературных данных ознакомится со следующими вопросами:
1) изучить историю развития биотехнологий;
2) рассмотреть основные направления биотехнологий в пищевой промышленности;
3) изучить основные принципы осуществления биотехнологических процессов.
Введение ……………………………………………………….………….…….3
1. Основные задачи и возможности биотехнологии в области пищевой промышленности ……………………………………………………………….5
1.1 Этапы развития пищевой биотехнологии………………………….12
1.2 Микроорганизмы, используемые в пищевой промышленности …14
1.3 Генетически модифицированные источники пищи……………….16
2. Пищевая биотехнология продуктов из сырья животного происхождения………………………………………………………………….18
2.1 Получение молочных продуктов……………………………….….18
2.2 Биотехнологические процессы в производстве мясных и рыбных продуктов………………………………………………..………………………23
3. Биотехнология продуктов из сырья растительного происхождения..25
3.1. Бродильные производства…………………………………………25
3.1.1 Пивоварение…………………………………………………….25
3.1.2 Виноделие………………………………………………………...26
3.2 Хлебопечение………………………………………………………….30
3.3 Выработка фруктовых соков и консервирование……………….....30
3.4 Продукты из сои………………………………………………………31
3.5 Микромицеты в производстве продуктов растительного происхождения…………………………………………………………………..32
4. Источники пищевого белка…………………………………………………..34
4.1 Грибы…………………………………………………………………..34
4.2 Съедобные водоросли………………………………………………..35
4.3 Дрожжи………………………………………………………………..36
4.4 Вторичные продукты переработки животного сырья……...............38
5. Перспективы развития пищевой биотехнологии………………………42
Заключение……………………………………………………………………….40
Библиографический список
Такими источниками пищевого белка могут быть биомасса грибов. Съедобные грибы являются строго сапрофитными организмами. В ходе эволюции грибы сформировали сложные симбиотические взаимоотношения с другими обитателями почвы — микроорганизмами и растениями. Это учли биотехнологи, когда в середине 50-х годов начали эксперименты по выращиванию мицелия высших грибов в биореакторе подобно тому, как удалось в индустриальных условиях выращивать мицелий микромицетов.[6]
Экспериментаторов увлекло предположение, что вегетативное тело высших грибов (мицелий, грибница) по своим вкусовым и питательным свойствам будет аналогично плодовым телам гриба. В значительной степени это предположение оправдалось, однако выращивание мицелия высших грибов оказалось весьма трудным делом: необходима питательная среда сложного состава, включающая пектины, пептиды, аминокислоты (аргинин, глутаминовую кислоту, аспарагин, метионин и др.), витамины (биотин, фолиевая кислота, рибофлавин и пр.), сахара, комплекс минеральных элементов. Кроме того, чтобы мицелий имел пищевую ценность и свойства грибного деликатеса, он должен иметь вкус и аромат грибов.
Установлено, что аромат и вкус грибов каждого вида обусловлен особым комплексом ароматических веществ, которые грибы в естественных условиях получают либо в чистом виде, либо в виде предшественников из окружающей среды (гумуса почвы), или при помощи симбионтов. Ароматизация мицелия и придание ему высоких вкусовых свойств оказались самой сложной задачей. Пока точно не установлены все вещества, определяющие органолептические свойства грибов, поэтому ароматизацию мицелия грибов осуществляют эмпирически, путем добавления в питательный субстрат экстрактов корней деревьев, молока, ферментолизатов дрожжей, отвара тыквы, экстрактов пшеничных ростков, сафлорового масла, высших спиртов и других природных субстратов и химикатов.
Питательную ценность имеет только мицелий истинных съедобных грибов — макромицетов (белый гриб, лисички и др.), в составе которых отсутствуют токсичные вещества. Мицелий условно съедобных грибов (сморчки, строчки, рыжики и др.), плодовые тела которых перед употреблением следует тщательно варить, для пищевых или кормовых целей непригоден.
Несмотря на существенные трудности, эксперименты по выращиванию макромицетов в биореакторе продолжаются. Болгарский микробиолог А. Торев вырастил мицелий трутовика (Polyporus squamosus) на мелассной среде и за 24—26 ч культивирования получил в пересчете на СВ 18—20 г мицелия на 1 л среды.[7]
Многие исследователи считают, что в будущем выращивание мицелия макромицетов обеспечит решение проблемы белка в масштабах всей планеты.
Промышленное культивирование мицелия высших грибов пока находится на стадии экспериментов, а мицелий микромицетов уже давно используется в питании человека. В пище жителей Азии и Дальнего Востока доминирует крахмал и не хватает белков. Для обогащения крахмалсодержащих продуктов белками и придания им вкуса мяса в этих странах уже с древних времен на растительных продуктах выращивают специально подобранные и естественным путем селекционированные виды плесневых грибов. Характерным элементом восточной кухни является продукт под общим названием «темпе». В Индонезии арахисовые или соевые лепешки употребляют в пищу обросшими плесневыми грибами рода Rhisopus. Арахисовое темпе содержит до 40 % белковых веществ и по вкусу напоминает мясные изделия. Японская кухня славится продуктом под названием «нате». Его получают из обросших плесневым грибом Aspergillus oryzae соевых бобов. Продукт имеет характерный острый вкус. В Китае аналогичным способом изготовляют сырообразный деликатес «суфу» (красный творог), используя для этого соевые бобы и некоторые виды плесневых грибов рода Mucor. Незаменимую приправу восточной кухни — соевый соус готовят с использова¬нием особых штаммов плесневого гриба Aspergillus oryzae, бактерий Pediococcus soyae, дрожжей Saccharomyces rouxii и некоторых видов дрожжей рода Torulopsis.[9]
Сказанное не охватывает все области использования плесневых грибов в древней и современной кулинарии, но характеризует принципиальные возможности использования микромицетов в качестве источника пищевого белка как в промышленных, так и в домашних условиях.
4.2 Съедобные водоросли
Народы Тихоокеанского побережья с давних пор употребляют в пищу морские и океанские водоросли. Жители Гавайских островов из 115 видов водорослей, обитающих в местных океанских пространствах, используют в питании 60 видов. В Китае также высоко ценят съедобные водоросли. Особенно ценятся сине-зеленые водоросли Nostoc pruniforme, по внешнему виду напоминающие сливу и по вкусовым качествам причисленные к китайским лакомствам. В кулинарных справочниках Японии встречается более 300 рецептур, в состав которых входят водоросли. На Дальнем Востоке весьма интенсивно используют водоросли в пищевых целях и плантации не успевают восстанавливаться естественным путем. В связи с этим все чаще водоросли культивируют искусственно, в подводных садах. Выращивание аквакультур — процветающая отрасль биотехнологии. Водоросли используют также в виде сырья для промышленности
В последнее время внимание специалистов, занимающихся вопросами питания, привлекает сине-зеленая водоросль спирулина (Spirulina platensis и Spirulina maxima), растущая в Африке (оз. Чад) и в Мексике (оз. Тескоко). Для местных жителей спирулина является одним из основных продуктов питания, так как содержит много белка, витамины А, С, D и особенно много витаминов группы В. Биомасса спирулины приравнивается к лучшим стандартам пищевого белка, установленным ФАО. Спирулину можно успешно культивировать в открытых прудах или в замкнутых системах из полиэтиленовых труб и получать высокие урожаи (примерно 20 г биомассы в пересчете на СВ с 1 м3 в сут).[13]
4.3 Дрожжи
Дрожжи — постоянный спутник человека, они используются в разных микробиологических процессах. Однако биомассу дрожжей как источник пищевого белка человек применяет только в экстремальных условиях (во время голода) или в качестве компонента сухого пайка (например, для альпинистов, мореплавателей). Одна из причин малой популярности дрожжевых блюд является сравнительно толстая клеточная оболочка дрожжей, препятствующая усвоению его организмом.
Наши представления о питательной ценности дрожжей постепенно меняются. Человек хорошо овладел искусством выращивания дрожжей в промышленных условиях, биотехнологи освоили технологию выращивания богатой белками биомассы хлебопекарных дрожжей Saccharomyces cerevisiae на простых синтетических средах (например, на этиловом спирте микробного или химического происхождения), а химики разработали способы выделения из дрожжевой биомассы очищенных белковых концентратов. Хлебопекарные дрожжи могут метаболизировать этиловый спирт благодаря наличию в клетках алкогольдегидрогеназы, но рост дрожжей на этаноле имеет множество особенностей. Стимулирующее действие на этанольные дрожжи в синтетической среде оказывают минимальные добавки аминокислот: глутаминовой (0,07%), аспарагиновой, а также глутатиона. Глутаминовая кислота повышает активность мальтатдегидросеназы (на 140%) и глюкозо-6-фосфатдегидрогеназы (на 90%), в то же время снижая активность НАДФ-зависимой глутаматдегидрогеназы. Это позволяет предположить, что экзогенная глутаминовая кислота не включается в ЦТК, но оказывает оберегающее действие на метаболиты этого цикла, поскольку расходуется на анаболические цели.
При выращивании хлебопекарных дрожжей на синтетической этанольной среде в лабораторном ферментаторе при непрерывном режиме с добавкой 0,5 % дрожжевого экстракта достигнута концентрация биомассы в пересчете на СВ 8—9 г/л при выходе 70—75% от использованного субстрата. Вместо дрожжевого экстракта можно применять кукурузный экстракт или депротеинизированный сок картофеля.
В некоторых странах Западной Европы развито производство из этанольных дрожжей очищенных белковых концентратов, которые предполагается добавлять в колбасный фарш. В Англии освоено произ-водство пищевого дрожжевого продукта на глюкозе.
У нас и за рубежом ведутся исследования по получению дрожжевых белковых изолятов пищевого назначения.
Использование макромицетов, микромицетов и водорослей в питании человека имеет более древние традиции, чем использование картофеля, капусты и других продуктов земледелия. Тот факт, что люди в основном ориентировались на потребление продуктов земледелия, скотоводства и рыболовства, возможно, объясняется тем, что в этих областях пищевого производства в свое время удалось достичь высокой производительности труда. Потенциальные возможности биотехнологии обеспечивают повышенную продуктивность микроорганизмов, сравнимую с продуктивностью земледелия и даже превосходящую ее.
4.4 Использование вторичных продуктов переработки животного сырья
При переработке сельскохозяйственных животных образуется перечень вторичных продуктов, богатых ценным белком: кровь и ее производные, кость, хрящ, сухожилия, шкуры, мездра, рога, копыта и т.д. Из перечисленных отходов на пищевые цели находит применение кровь (как источник белка). Остальные продукты применяются недостаточно для пищевых и кормовых целей, хотя имеют высокую биологическую ценность. Несмотря на высокое содержание незаменимых аминокислот, в исходном виде это сырье представляет лишь потенциальный источник белка ввиду слабой доступности к гидролизу со стороны пищеварительных ферментов (низкая перевариваемость и усвоение), а также невыраженных функциональных свойств (плохая растворимость и эмульгирующая способность, жесткость и т.д.). Функциональный мясной протеин является продуктом переработки с использованием специфичных ферментных препаратов вторичного сырья, получаемого при ручной или механической дообвалки мяса и птицы в виде мясокостного остатка и при потрошении птицы, и может быть использован при производстве различных продуктов питания, позволяя решить проблему дефицита животного белка в рационе питания человека и сократить чрезмерное присутствие в продуктах питания растительных белков, в первую очередь из сои, и структурообразователей.
Функциональный мясной протеин используется для производства функциональных продуктов питания (диетических, лечебно-профилактических, детских, специального назначения).[5]
Наиболее эффективным средством решения данной проблемы является биотехнология, а именно использование ферментов. Особенно здесь полезны ферменты микроорганизмов, способные расщеплять труднодоступные белки животных, главным образом кератин, коллаген, эластин. Ферментация сырья позволяет улучшить пищевые свойства, функциональность и биологическую ценность продуктов.
5. Перспективы развития пищевой биотехнологии
Для пищевой биотехнологии перспективны следующие направления развития.
· Создание новых штаммов микроорганизмов, используемых в качестве заквасок в молочной промышленности, в виноделии, пивоварении.
· Разработка новых штаммов - продуцентов веществ и соединений, применяемых в пищевой промышленности (органических кислот, пищевых добавок, компонентов биологически активных добавок и др.).
· Получение с помощью микроорганизмов ферментов для разных отраслей пищевой промышленности – молочной (сыры), пивоваренной, безалкогольной, мясной (сыровяленые и сырокопченые колбасы, мясные изделия), пищевых концентратов и т.д.
· Использование отходов пищевой промышленности (молочной, сахарной и др.), а также других отраслей промышленности (химической, целлюлозно-бумажной) в качестве основных компонентов питательных сред для культивирования микроорганизмов.
Таким образом, развитие пищевой биотехнологии определяется не только совершенствованием, повышением эффективности традиционных биотехнологических процессов, но и разработкой совершенно новых процессов производства пищевых продуктов.
Применяя обычные технологические линии по производству синтетических волокон, можно получать из искусственных белков длинные нити, которые после пропитки их формообразующимн веществами, придания им соответствующего вкуса, цвета и запаха могут имитировать любой белковый продукт. Таким способом уже получены искусственное мясо (говядина, свинина, различные виды птиц), молоко, сыры и другие продукты. Они уже прошли широкую биологическую апробацию на животных и людях и вышли из лабораторий на прилавки магазинов США, Англии, Индии, стран Азии и Африки. Только в одной Англии их производство достигает примерно 1500 тонн в год. Интересно, что белковую часть школьных обедов в США уже разрешено на 30 процентов заменять искусственным мясом, созданным на основе соевого белка.
Используемое в питании больных Ричмондского госпиталя (США) искусственное мясо получило высокую оценку главного диетолога. Врачи госпиталя отмечали также положительное влияние рациона на здоровье пациентов и особенно больных атеросклерозом. В состав такого мяса обязательно включают специально обработанный искусственный белок, небольшое количество яичного альбумина, жиры, витамины, минеральные соли, природные красители, ароматизаторы и прочее, что дает возможность «лепить» изделие с заданными свойствами, учитывая при этом физиологические особенности организма, для которого продукт предназначен. Это особенно важно в диете детей и людей пожилого возраста, больных и выздоравливающих, когда необходимо лимитировать питание по целому ряду пищевых компонентов, что весьма трудно сделать, используя традиционные продукты. Такое мясо можно резать, замораживать, консервировать, сушить или прямо использовать для приготовления различных блюд.[1]
В связи
с возможной нехваткой