Иерархия регуляторных систем. Механизмы внутриклеточной регуляции

Автор работы: Пользователь скрыл имя, 06 Декабря 2013 в 12:22, реферат

Описание работы

Для нормального функционирования многоклеточного организма необходима взаимосвязь между отдельными клетками, тканями и органами. Эту взаимосвязь осуществляют 4 основные системы регуляции .
• Центральная и периферическая нервные системы через нервные импульсы и нейромедиаторы;
• Эндокринная система через эндокринные железы и гормоны, которые секретируются в кровь и влияют на метаболизм различных клеток-мишеней;

Файлы: 1 файл

биофизика!!.docx

— 1.07 Мб (Скачать файл)

 

 

Исследование  перегретых жиров. При продолжительном и многократном нагревании жиров до 200—300 °С происходит снижение их биологической ценности из-за образования токсических продуктов термического окисления: низкомолекулярных жирных кислот, пере-кисных радикалов, альдегидов, термостабильных продуктов сополимеризадии. Перегретые жиры вызывали у подопытных животных торможение роста, снижение активности щелочной фосфотазы, нарушение липидного обмена, атрофию и поражение слизистой оболочки верхнего отдела тонкого кишечника и желудка, жировую инфильтрацию и дистрофические изменения в печени, канцерогенез. Жарение во фритюре широко используется на флоте при приготовлении пирожков, пончиков, картофеля и т. д. Поэтому определение количества продуктов термического окисления жиров во фритюре является важной гигиенической задачей. Исследование проводят с применением различных методик: по коэффициенту рефракции, колориметрическим и люминесцентным методами, цветной реакцией (проба с метиленовым синим).

Определение по коэффициенту рефракции. Для анализа отбирают одновременно исходный жир и тот же жир, но использовавшийся для обжаривания. Мутный жир фильтруют через крупнопористую фильтровальную бумагу. На призму рефрактометра типа ИРФ-22 стеклянной палочкой с оплавленным концом наносят 3 капли жира, который не подвергался нагреванию. Измеряют показатель преломления. Призму протирают эфиром, а затем так же рефракто-метрируют жир, использовавшийся для жаренья. Разность показателей гретого и свежего жира не должна превышать 0,0015.

Калориметрический метод. При действии спиртовых растворов щелочей на продукты термического окисления жиров образуются хинойодные соединения темного цвета. По интенсивности окраски раствора ориентировочно определяют степень термического окисления. В большую градуированную пробирку отвешивают 1 г исследуемого жира, добавляют 15 мл свежеприготовленного 1 н. раствора едкого калия в этиловом спирте, не содержащем карбонильных соединений, смешивают и переносят в кипящую водяную баню на 5 мин. Затем быстро охлаждают водой, доводят объем этиловым спиртом до 25 мл, смешивают. Раствор фильтруют через бумажный фильтр в кювету фотоэлектроколориметра (расстояние между гранями 10 мм). Оптическую плотность замеряют сравнительно с плотностью раствора 1 г исследуемого жира в 25 мл хлороформа. Содержание продуктов окисления и сополимеризации (С) в процентах рассчитывают по формуле

С =  

3,44Д

+ 0,02 ,

р


 

где Д — оптическая плотность спирто-щелочного раствора жира; р—масса навески, г; 0,02 и 3,44 — эмпирические коэффициенты.

Люминесцентный  метод основан на свойстве жиров люминесцировать в потоке ультрафиолетовых лучей с различной цветной реакцией в зависимости от степени окисления. Накопление продуктов термического окисления повышает показатель преломления жира.

В пробирку из нефлюоресцирующего стекла наливают 3—4 мл исследуемого масла, добавляют столько же дистиллированной воды и 3—4 капли 10%-ного раствора аммиака. Смесь в пробирке хорошо встряхивают и центрифугируют до ясного разделения водного и жирового слоев. Исследование проводят в затемненной комнате на темном фоне. Источник ультрафиолетовых лучей помещают на расстоянии 10 см от пробирок. При содержании окисленных веществ более 1% цвет люминесценции водного слоя будет отчетливо голубой, менее 1% (до 0,5%) — зеленоватый с голубовато-дымчатым оттенком. У жира с количеством окисленных веществ менее 0,5% наблюдается зеленое свечение. У фритюрных смесей с гидрогени-зированными жирами такой закономерности не наблюдается.

При невозможности  люминесцентного исследования качество гретого подсолнечного масла, а  также фритюрных смесей можно определить путем цветной реакции.

Проба с  метиленовым синим. В пробирку помещают 3 мл расплавленного на водяной бане жира, приливают 7,0 мл 2%-ного спиртового раствора едкого калия. Пробирку закрывают корковой (не резиновой) пробкой и энергично встряхивают в течение 1 мин. После разделения жидкостей верхний спирто-щелочный слой вытяжки фильтруют через бумажный фильтр в колбочку. Для проведения реакции пипеткой берут 1 мл фильтрата, помещают в пробирку и добавляют 5 капель 0,01%-ного раствора метиленового синего. Содержимое пробирки встряхивают и оставляют на 5 мин. При наличии в исследуемом фритюре менее 1% окисленных веществ цвет жидкости в пробирке становится розовым, при содержании более 1% — желто-коричневым. При добавлении в пробирку 2 капель краски Тильманса (0,02%-ного водного раствора) в первом случае раствор синеет, а во втором становится зеленым. Сильно перегретые жиры исследуют только с помощью реакции с метиленовым синим. 

 

 

Консервирование пищевых  продуктов

Консервирование пищевых продуктов (лат. conservaге хранить, сохранять) — обработка пищевых продуктов, предохраняющая их от порчи и обеспечивающая длительную сохранность.

При консервировании используются методы, обеспечивающие гибель микроорганизмов, либо переводящие их в состояние  анабиоза. Под влиянием консервирования  подавляется и деятельность ферментов  микроорганизмов. Консервирование  позволяет создавать запасы скоропортящихся  пищевых продуктов, перемещать их на дальние расстояния вне зависимости  от климатических условий и обеспечить необходимый ассортимент продуктов  питания на протяжении всего года.

Технический прогресс в технологии консервирования позволил внедрить в практику методы, обеспечивающие высокую устойчивость продуктов  питания при длительном хранении с сохранением их пищевых, вкусовых и биологических свойств.

Термический метод используется наиболее широко. Этот метод консервирования основан на отмирании различных видов микроорганизмов под влиянием температурного воздействия. Вегетативные формы микроорганизмов в основном инактивируются при t° 60—70° в течение 1 —10 минут, за исключением термофильных бактерий, способных выживать при t° 80°. Устойчивостью к высокой температуре отличаются споры, для инактивации которых требуется нагревание выше 100° при экспозиции от 30 минут до 2—3 часов.

Стерилизация обеспечивает освобождение консервируемого пищевого продукта от вегетативных форм микроорганизмов  и от спор. При стерилизации используются режимы с t° 108—120° в течение 40— 90 минут.

Консервирование жидких пищевых продуктов  — молока, овощных и фруктовых  соков, пива — производится пастеризацией. При этом пищевой продукт освобождается  от жизнеспособных патогенных микроорганизмов  кишечной группы, микобактерий туберкулеза  и некоторых других микроорганизмов. Различают низкую пастеризацию, которая  проводится при t° 65° в течение 20 минут, и высокую — при t° 85—90° в течение не более 1 минуты. При этом обеспечивается достаточный эффект с минимальным изменением пищевых и вкусовых свойств пастеризуемых продуктов.

 


Низкая температура является лучшим консервирующим фактором, обеспечивающим сохранение скоропортящихся пищевых  продуктов с наименьшими изменениями  природных свойств и наименьшими  потерями биологически активных компонентов  пищи — витаминов, ферментов и  другого. Под действием низкой температуры (—20° и ниже) большинство микроорганизмов  прекращает свое развитие, за исключением  психрофилов, грнбков и плесени, которые сохраняют жизнеспособность при t° — 20° и ниже. Низкая температура, применяемая при консервации, не убивает микроорганизмы, а только прекращает их рост. Такие патогенные микроорганизмы, как сальмонеллы и стафилококки, выживают в замороженных пищевых продуктах в течение нескольких месяцев.

Консервация низкой температурой производится путем охлаждения пищевого продукта или его замораживания. Охлаждение представляет собой воздействие  низкой температуры на пищевой продукт  с доведением температуры в толще  его от 4 до 0°. При охлаждении пищевой  продукт, не подвергаясь замораживанию, сохраняет свои пищевые, вкусовые и  биологические свойства. Наиболее часто  консервация охлаждением подвергается мясо. Хранение охлажденных продуктов  производится в холодильных камерах  при t° от 0 до 2° и относительной влажности не выше 85%. Охлажденное мясо может храниться без признаков порчи до 20 суток.

Замораживание существенно нарушает структуру клеток и тканей замораживаемых продуктов, которые после оттаивания резко отличаются от свежих продуктов (рис., а). При медленном замораживании  в клетках консервируемого пищевого продукта образуются крупные кристаллы  льда (рис., в, г), которые разрушают  оболочки и клеточные элементы. В  процессе оттаивания вода не возвращается в коллоиды и продукт подвергается дегидратации; при этом теряются белковые и другие питательные вещества. Сохранить высокое качество продуктов при оттаивании помогает способ быстрого замораживания. В этом случае образуется большое количество мелких кристаллов (рис., б); при их оттаивании вода легко возвращается в коллоиды, из которых они образовались. Быстрое замораживание дает минимальные потери витаминов и обеспечивает наименьшее развитие микроорганизмов в продуктах.

Качество замороженных продуктов  зависит от способа оттаивания. Быстрое  оттаивание замороженного мяса сопровождается значительными потерями питательных, экстрактивных и биологически активных веществ. Поэтому замороженное мясо следует оттаивать медленно.

Обезвоживание (сушка) — консервирование, основанное на прекращении жизнедеятельности микроорганизмов при содержании влаги в пищевом продукте менее 15%. При консервировании сушкой микроорганизмы не погибают, а переходят в состояние анабиоза; при увлажнении продукта они вновь становятся жизнеспособными. Сушка при обычном атмосферном давлении может быть естественной и искусственной. Консервирование методам естественной сушки относятся солнечная сушка (получение сухих фруктов) и вяление (в целях длительного сохранения рыбных продуктов).

Искусственная камерная сушка может  быть струйной, распылительной и пленочной. При струйном методе сушка производится в сушильных камерах, в которых  пищевые продукты подвергаются непрерывному действию струи горячего воздуха, поступающего из калориферов; влага удаляется  через специальные вентиляционные системы.

Распылительная сушка, используемая для обезвоживания жидких пищевых  продуктов (молока, яиц, томатного сока), производится в специальной камере при t° 90—150° путем распыления жидкого продукта через форсунку в тонкую взвесь, которая под действием горячего воздуха быстро высыхает и в виде порошка оседает на дно камеры. При распылительной сушке продукт подвергается кратковременному действию высокой температуры, в связи с чем он мало изменяется и сохраняет все свои природные свойства. Получаемые таким образом сухие продукты (порошки) при добавлении воды легко восстанавливаются в исходный продукт, пригодный для употребления.

Консервация жидких продуктов может  быть произведено и методом пленочной  сушки посредством нанесения  жидкого продукта на нагретую поверхность  вращающегося барабана. Продукты, полученные методом пленочной сушки, значительно  уступают продуктам, изготовленным  распылительной сушкой. Так, растворимость  молочного порошка от распылительной сушки достигает 97—99%, тогда как  сухое молоко пленочной сушки  растворяется только на 80— 85%.

Вакуумная сушка, производимая обычно при невысокой температуре, обеспечивает полную сохранность пищевых продуктов. Одним из видов вакуумной сушки  является лиофилизация. Основным принципом  лиофилизации как метода консервации  является обезвоживание продукта в  условиях вакуума и удаление влаги  непосредственно из кристаллов льда, минуя жидкую фазу. В процессе лиофилизации различают три периода. В первом периоде загруженные в сублиматор продукты подвергаются действию глубокого вакуума, при котором продукт самозамораживается и непосредственно из кристаллов льда происходит испарение влаги. В высушиваемых продуктах температура достигает —17°. Этот период длится 15—25 минут, в течение которых удаляется около 18% влаги. Во втором периоде при t° —10—20° удаляется около 80% влаги, затем плиты, на которых расположены высушиваемые продукты, нагревают. При этом продукты не размораживаются, и удаление влаги продолжается непосредственно из кристаллов льда. Сушка во втором периоде продолжается 10—20 часов в зависимости от влажности и веса продукта. В третьем периоде производится тепловая вакуумная сушка при t° 45—50° в течение 3—4 часов.

Соление и консервирование  сахаром производятся на основе повышения осмотического давления. Этот метод консервирования основан на свойстве микроорганизмов сохранять жизнеспособность только при условии определенной разности осмотического давления внутри бактериальной клетки и окружающей среды (осмотическое давление в бактериальной клетке несколько выше, чем в окружающей среде). Повышение осмотического давления в пищевом продукте приводит к нарушению обмена между микробной клеткой и внешней средой, к обезвоживанию клетки, уменьшению объема протоплазмы и гибели микробной клетки. Высоким осмотическим давлением отличаются расворы поваренной соли и сахара. Так, осмотическое давление 1% раствора поваренной соли или сахара равно 6,1 атмосферы.

При консервировании солением применяются 8—12% растворы поваренной соли, что  соответствует 50—73 атмосфер осмотического  давления, которое обеспечивает надежный консервирующий эффект. Однако имеются  микроорганизмы (Serratia salinaria), способные выдерживать высокие концентрации поваренной соли (до 15—20%). В практике используются сухой, мокрый, теплый и холодный посолы. При сухом посоле засаливаемые продукты обрабатываются сухой солью, без рассола. Мокрый, или тузлучный, посол производится путем погружения продукта в заранее приготовленный насыщенный солевой раствор. Посол замороженных продуктов называется холодным, а посол при температуре окружающего воздуха — теплым. К. солением сопровождается некоторой потерей питательных веществ.

При консервировании сахаром обычно создается концентрация его около 60%, что соответствует 350 атмосфер осмотического  давления. Столь высокое давление обеспечивает надежный консервирующий эффект — хранение в течение длительного  срока при любой температуре  окружающей среды.

Маринование и квашение основаны на способности микроорганизмов развиваться вузких пределах рН. Изменение величины рН нарушает дисперсность протоплазмы микробной клетки и прекращает ее жизнедеятельность. Так, при рН ниже 4,5 прекращается жизнедеятельность гнилостных бактерий (изменение концентрации водородных ионов напрактике осуществляется методом маринования). При мариновании используются пищевые кислоты, в том числе уксусная кислота, которая в концентрации 4—6% вызывает гибель микроорганизмов, а в концентрации 1 —1,8% ослабляет жизнедеятельность микроорганизмов и переводит их в состояние анабиоза. Для повышения эффективности консервирования маринование сочетается с пастеризацией и солением. Маринованные продукты должны храниться притемпературе не выше 6°.

При квашении изменение концентрации водородных ионов сочетают со специфическим  действием молочной кислоты —  сахар сбраживается в молочную кислоту. Под влиянием квашения полностью  подавляется жизнедеятельность  патогенной неспороносной микрофлоры и происходит инактивация яиц гельминтов.

Химические консерванты при консервировании пищевых продуктов в нашейстране применяются ограниченно; допускаются только некоторые химические вещества в количествах, не вредных для здоровья потребителей. В качестве химических консервантов используются пищевые антисептики (бензойная, сернистая и сорбиновая кислоты), антибиотики и антиокислители. Бензойная кислота в применяемых для консервации количествах безвредна, однако ее консервирующие свойства невелики. Безусловно допустимая суточная доза бензойной кислоты до 5 мг/кг и условно допустимая доза 5—10 мг/кг массы тела. В СССР бензойная кислота допускается в мармеладе, пастиле, повидле и в меланже в количестве 700 мг/кг; в презервах (кильки) и плодово-ягодных соках — 1000 мг/кг. Сернистая кислота, сернистый ангидрид, бисульфат натрия и пиросульфатнатрия применяются для сульфитации плодов и овощей. Под влиянием сульфитации обеспечивается лучшая сохраняемость продуктов и более высокое содержание в них аскорбиновой кислоты. Сульфитированные овощи и плоды в процессе тепловой обработки подвергаются частичной десульфитации. Содержание сернистой кислоты во фруктовых соках и сухих фруктах допускается до 100 мг/кг, в томате-пюре — до 1500 мг/кг. Сорбиновая кислота наиболее приемлема для консервирования пищевых продуктов. Она характеризуется высоким антимикробным действием и наименьшим проявлением каких-либо отрицательных действий на организм. Превращение сорбиновой кислоты в организме происходит по типу превращений ненасыщенных жирных кислот. Безусловно допустимая суточная доза сорбиновой кислоты — до 12,5 мг/кг, условно допустимая доза — 12,5—25 мг/кг массы тела. Сорбиновая кислота допускается в безалкогольных напитках в количестве 300—500 мг/кг, в плодово-ягодных соках и сгущенном молоке — 1000 мг/кг, при обработке поверхности сыров — 2000 мг/кг, а полукопченых колбас — 5000 мг/кг. Антибиотики для целей консервации применяются в крайне ограниченном ассортименте и объеме. В пищевой промышленности допускаются только такие антибиотики, которые не применяются в медицине для лечебных целей и которые наряду с высоким антимикробным действием неустойчивы в окружающей среде и инактивируются при тепловой обработке. В виде исключения в пищевой промышленности используется биомицин — только в виде биомицинового льда (5 г тетрациклина на 1т льда). Биомициновый лед используется при перевозке на дальние расстояния рыбы тресковых пород и мяса. Применение хлортетрациклинагидрохлорида для консервации продуктов питания в нашей стране не допускается. В СССР временно разрешено применение двух антибиотиков — нистатина и хлортетрациклинагидрохлорида для обработки мясных туш путем орошения их растворами (хлортетрациклинагидрохлорид — 100 мг и нистатин — 200 мг на 1 л воды). Для обработки некоторых овощных и фруктовых продуктов применяется низин, к которому особенно чувствительны стафилококки. Низин обладает способностью снижать устойчивость спор к нагреванию, что способствует более эффективной их инактивации. Антиокислители применяются для предупреждения порчи жиров. В качестве антиокислителей жиров допущены бутилоксианизол, бутилокситолуол и додецилгаллат. В качестве антиокислителей жиров может использоваться аскорбиновая кислота и аскорбилпальмитат.

Информация о работе Иерархия регуляторных систем. Механизмы внутриклеточной регуляции