Автор работы: Пользователь скрыл имя, 08 Апреля 2013 в 17:03, курсовая работа
Целью нашей работы было изучить наиболее важные изменения в строении дыхательной системы представителей различных классов позвоночных и пути и причины возникновения этих изменений.
Для этого нам предстояло решить следующие задачи:
1. Найти литературные источники, в которых достаточно подробно излагается этот материал.
2. Проработать их и отобрать материал, раскрывающий ход и причины эволюции дыхательной системы позвоночных от круглоротых до птиц и млекопитающих.
3. Выявить положительное влияние усложнения (преобразования) дыхательной системы на физиологические процессы и на организм животного в целом.
4. Подобрать иллюстративный материал, помогающий лучше понять особенности строения дыхательной системы каждой рассматриваемой группы.
Введение 3
1. Эволюция органов дыхания первичноводных позвоночных 5
2. Эволюция органов дыхания наземных позвоночных 20
Заключение…………………………………………………………………...…34
Список литературы………..……………………………………………………35
Министерство образования и науки Российской Федерации
Федеральное государственное бюджетное образовательное
учреждение
высшего профессионального
«Рязанский
государственный университет
Естественно-географический факультет
Кафедра биологии и методики ее преподавания
Курсовая работа
«Эволюция дыхательной системы позвоночных животных»
Работу выполнила:
Cирман С.В.,
специальность 050102.65 - Биология с
доп. спец. химия
курс 3 , группа А.
Научный руководитель:
Чельцов Н.В., канд. биол. наук, доцент
Отметка о допуске к защите: _________________________
Дата публичной защиты: ___________________________
Оценка: ________________ _______________ (________________)
Рязань 2012
Содержание
Список литературы………..………………………………………
Основная функция
дыхательной системы –
У низших многоклеточных животных (губки, кишечнополостные) специальных органов дыхания нет, и газообмен происходит путем диффузии кислорода и углекислого газа (растворенных в воде) между отдельными клетками организма и внешней средой. С развитием системы кожных покровов (на уровне организации червеобразных животных) газообмен с внешней средой стал осуществляться главным образом через покровы (кожное дыхание). У высших многоклеточных дифференцируются специальные органы газообмена различного происхождения и строения. У первично водных животных такими органами являются жабры, а у наземных – легкие или трахеи.[12]
Позвоночные возникали как первичноводные животные, поэтому использовали кислород, растворенный в воде с помощью жабр. Выход на сушу стал возможен благодаря возникновению легких, строение которых изменялось в соответствии с возрастающими потребностями организмов в кислороде. Целью нашей работы было изучить наиболее важные изменения в строении дыхательной системы представителей различных классов позвоночных и пути и причины возникновения этих изменений.
Для этого нам предстояло решить следующие задачи:
1. Найти литературные
источники, в которых
2. Проработать их и отобрать материал, раскрывающий ход и причины эволюции дыхательной системы позвоночных от круглоротых до птиц и млекопитающих.
3. Выявить положительное
влияние усложнения (преобразования)
дыхательной системы на
4. Подобрать
иллюстративный материал, помогающий
лучше понять особенности
Актуальность: Формирование эволюционных взглядов на окружающий мир – одна из важнейших задач школьного биологического образования. На примере дыхательной системы учащимся очень удобно показывать реальность преобразований организмов, происходящих в процессе эволюции. Поэтому наша работа, доступно описывающая и наглядно иллюстрирующая этот процесс, является актуальной.
В связи с
преобразованием дыхательной
Прежде всего заметим, что в 1 литре воды растворяется не более 10 см3 кислорода, тогда как в 1 л воздуха содержится около 210 см3 кислорода.[5]
У низших хордовых (оболочники, бесчерепные) основную роль в процессах газообмена еще играет кожное дыхание: газообмен происходит путем диффузии кислорода и углекислого газа (в направлении среды с меньшим парциальным давлением соответствующих газов) между снабжающими покровы кровеносными сосудами и внешней средой. Но при этом у низших хордовых существует еще один важный орган газообмена – жаберные щели. Они представляют собою короткие каналы щелевидной или округлой формы, соединяющие полость глотки (передний отдел пищеварительного тракта) с внешней средой. Вода, направляемая работой мерцательных клеток глоточного эпителия и специального мерцательного органа, расположенного вблизи ротового отверстия, непрерывным, хотя и медленно текущим потоком входит через ротовое отверстие в глотку и далее следует через жаберные щели наружу. В жаберных щелях вода проходит сквозь своеобразный «слизевой фильтр» (слизь, выделяемая железистыми клетками эпителия глотки, стекает сверху на жаберные щели), который используется животным для извлечения мелких пищевых частиц (различных микроорганизмов и органических остатков, взвешенных в морской воде). Одновременно проходящая сквозь жаберные щели вода обогащает кислородом кровь, текущую по многочисленным жаберным артериям, располагающимся в перегородках между жаберными щелями, а углекислый газ диффундирует из крови в воду.[7]
Жаберные щели, где поток воды непрерывно омывает тонкие жаберные перегородки с проходящими в них кровеносными сосудами, оказались весьма перспективными для развития специальных органов дыхания (первых в истории хордовых животных). Этими органами стали жабры, характерные для всех первичноводных позвоночных.[7]
Жабры представляют
собою складки слизистой
Каждая жаберная щель в эмбриональном развитии образуется прорывом стенок тела зародыша благодаря соединению двух карманообразных впячиваний, растущих друг другу навстречу; эктодермального (от покровов – внутрь) и энтодермального (от стенок глотки – кнаружи). Жабры могут развиваться либо в эктодермальной, либо в энтодермальной части жаберной щели. Эктодермальные жабры возникли у предков челюстноротых позвоночных, энтодермальные – у предков бесчелюстных. Вероятно, первоначально экто - и энтодермальные жабры были функционально примерно равноценны. Однако они по-разному расположены по отношению к скелетным элементам, имеющим у позвоночных мезодермальное происхождение: эктодермальные жабры – кнаружи от скелетных жаберных дуг, энтодермальные – ковнутри от последних. Это обстоятельство стало существенным при развитии специальных механизмов вентиляции жабер, обеспечивающих более интенсивный (чем под воздействием мерцательного эпителия) поток воды через жаберную область.[1]
Необходимость в жаберном насосе возникла при переходе предков позвоночных к активному образу жизни: от пассивного фильтрационного питания при относительно малой подвижности животных у морского дна – к активным поискам пищи, требующим более значительных и быстрых перемещений в толще воды. Активизация образа жизни требовала более высокого уровня обмена веществ и энергии, достижение которого было возможно только при существенной интенсификации дыхания, необходимой предпосылкой чего и является развитие механизма активной вентиляции жабер – жаберного насоса.[18]
Морфологической основой для развития жаберного насоса стали висцеральный скелет и его мускулатура. Висцеральный скелет сформировался как защита и опора передней части пищеварительного тракта – глотки с ее аппаратом слизевой фильтрации, Вероятно, этот скелет был первоначально представлен хрящевыми жаберными дугами, кольцеобразно охватывающими глотку между жаберными щелями. Сокращение висцеральных мышц, расположенных снаружи от жаберных дуг, сжимает глотку; при этом находящаяся в ней вода устремляется наружу через жаберные щели (и отчасти через ротовое отверстие). После расслабления висцеральных мышц первоначальные форма и объем глотки восстанавливаются благодаря эластичности хрящевых колец – жаберных дуг; давление в полости глотки становится ниже, чем во внешней среде, и вода засасывается в глотку через рот и через жаберные щели.[12]
Дальнейшая активизация образа жизни требовала соответствующей интенсификации и упорядоченности работы жаберного насоса. Эта задача была решена принципиально по-разному у предков современных бесчелюстных и челюстных позвоночных.[12]
У бесчелюстных метамерные хрящевые кольца жаберных дуг объединились продольными хрящевыми балками (комиссурами) в единую жаберную решетку – ажурную упругую конструкцию, заключающую внутри себя энтодермальные жабры. Висцеральные мышцы сжимают жаберную решетку как целое; при их расслаблении решетка расправляется благодаря упругости образующих ее хрящей.[19]
У современных представителей бесчелюстных – миног и миксин (класс круглоротых) жаберные щели внутри жаберной решетки образуют расширения – округлые полости, называемые жаберными мешками (от 7 до 14 пар). Тонкие жаберные лепестки свешиваются в полость жаберных мешков. Жаберные мешки охвачены околожаберными синусами, которые представляют собой лакуны, заполненные кровью и лимфой. Благодаря несжимаемости жидкостей давление, возникающее при сжатии мышцами жаберной решетки снаружи, приводит к равномерному сжатию жаберных мешков со всех сторон. Внутренние жаберные отверстия ведут из жаберных мешков в глотку или (у миног) в ее обособленную нижнюю часть – дыхательную трубку, которая впереди снабжена клапаном, пропускающим воду лишь в одном направлении: из ротовой полости в дыхательную трубку. Это устройство позволяет миногам вентилировать жабры, когда животное присасывается с помощью присасывательной воронки, расположенной впереди ротового отверстия, к добыче или какому-либо другому подводному объекту. В этом случае при дыхательных движениях жаберной решетки вода входит и выходит через наружные жаберные отверстия (когда минога плывет, вода в жаберную систему поступает также через рот).[5]
Совершенно
иначе была решена проблема интенсификации
дыхания у предков
Рис.1.Поперечный разрез речной миноги.
А — в области жаберных мешков; Б — в области кишки:
1 — хорда, 2 — соединительнотканная оболочка хорды, 3 — хрящевые зачатки верхних дуг, 4 — миомер, 5 — миосепта, 6 — спинной мозг, 7 — спинная аорта, 8 — хрящ языка, 9 — мускулатура языка, 10 — пищевод, 11 — жаберный мешок, 12 — наружное отверстие жаберного мешка, 13 — внутреннее отверстие жаберного мешка, 14 — дыхательная трубка, 15 — брюшная аорта, /6 —кишка, 17 — спиральный клапан, 18 — почка, 18а — мочеточник, 19 — половая железа, 20 — плавниковый луч, 21 — лимфатические полости, 22 — задние кардинальные вены
Способность независимых
друг от друга висцеральных дуг энергично
сжимать соответствующий
У наиболее примитивных
современных челюстноротых
В брызгальцах и в ротовой полости вблизи рта имеются клапаны, препятствующие обратному (изнутри кнаружи) потоку воды при сжатии жаберных дуг, вызывающем повышение давления в глотке. При этом вода устремляется в околожаберную полость, омывая жаберные лепестки, и далее через жаберные отверстия наружу, отводя вбок свободные края жаберных перегородок. Затем жаберные дуги растягиваются, давление в глотке падает ниже такового во внешней среде, и вода снаружи начинает всасываться в глотку через ротовое отверстие и брызгальца (последние особенно сильно развиты у скатов, у которых они используются как основные «входные» отверстия в ротоглоточную полость, когда эти рыбы лежат на морском дне). Засасыванию воды через жаберные щели препятствуют свободные края жаберных перегородок, прижимаемые друг к другу внешним давлением.[7]
Информация о работе Эволюция дыхательной системы позвоночных животных