Автор работы: Пользователь скрыл имя, 09 Апреля 2013 в 22:34, реферат
Мутация — это внезапное наследственное изменение, вызванное резким структурным и функциональным изменением генетического материала. Генетический материал организован в иерархию структурно-функциональных единиц — от цеолитов (молекулярных сит) внутри гена до целых хромосом и геномов. Соответственно существуют разные типы мутаций — от генных до геномных.
Вид |
Среднее рас- стояние, покрываемое за одно поколение |
Число поколений в год |
Расстояние расселения за 1000 лет (экс- траполяция) |
Drosophila pseudoobscura и родственные формы |
176; 361 |
7 |
1234; 2527 |
Scelopopus olivaceus |
49; 71 |
1 |
49; 71 |
Cepaea nemoralis |
8.1 |
1 |
8.1 |
Senecio jacobaea |
6.3 |
0.5 |
3.2 |
Liatris aspera |
2.5; 3.5 |
0.2 |
0.5; 0.7 |
Phlox pilosa |
1.1; 2.4 |
0.3 |
0.3; 0.7 |
Виды, фигурировавшие в табл. 7.3, вновь представлены в табл. 7.5 с указанием времени генерации. Для четырёх видов использованы средние расстояния расселения. Для Drosophila и Sceloporus они взяты непосредственно из табл. 7.3; для Liatris и Phlox меньшие значения относятся к расселению семян, а большие соответствуют сумме расстояний, на которые расселяются семена и пыльца. Последний столбец содержит оценки кумулятивного расстояния, на которое каждый вид мог бы расселиться или мигрировать за 1000 лет в результате ряда последовательных средних расселений в одном и том же направлении.
Мы видим, что высокоподвижная Drosophila pseudoobscura за 1000 лет может расселиться или мигрировать на 1200 -- 2500км. Большее из этих расстояний почти равно длине или ширине её видового ареала в западной части Северной Америки. Растения с сидячим образом жизни, напротив, за 1000--10000 лет расселяются или мигрируют всего на несколько километров. Это расстояние составляет лишь незначительную долю их видового ареала. Ящерица и лягушка по способности к расселению занимают промежуточное положение.
Поток генов во времени
Нас здесь интересует генетически эффективный поток генов, происходящий на протяжении ряда поколений, в который вовлечены три или большее число популяций или субпопуляций. Мы будем применять формулу, приведенную ранее для простого случая, к несколько более сложному случаю с участием трёх поколений и четырёх популяций.
Допустим, что существуют четыре полуизолированные популяции (А, В, С и D), распространенные по трансекте, тянущейся с востока на запад. Популяция А содержит новый аллель G2, частота которого в поколении 0 равна 1.0; остальные популяции содержат прежний аллель (G1) с исходной частотой 100%. Аллель G2 в селективном отношении не лучше, но и не хуже аллеля G1. Между соседними популяциями имеет место миграция в обоих направлениях со скоростью m=0.1. Спустя три поколения частота нового аллеля G2 в четырёх популяциях составит:
популяция A q = 0.755
популяция В q = 0.219
популяция С q = 0.025
популяция D q = 0.001
Совершенно очевидно, что частота нового аллеля на каждом этапе его миграционного пути резко уменьшается. И это несмотря на то, что в нашем примере исходное различие по частотам аллеля между популяцией А и другими популяциями очень велико, в сущности максимально, и скорость миграции относительно высока. В некотором ограниченном ряду генераций (большем, чем в этом примере) на одном из этапов миграции новый мигрирующий аллель G2 окажется таким редким, что его шансы попасть в следующую выборку эмигрантов будут очень незначительны. Процесс генетически эффективного потока генов временно прекратится.
На протяжении длинного ряда поколений при продолжающемся потоке генов частоты аллелей во всех четырёх популяциях будут приближаться к равновесным, но на это потребуется много времени.
В предыдущем разделе мы пришли к выводу, что расстояния, на которые происходит расселение, с увеличением числа поколений приобретают существенную дополнительную компоненту. По расстояниям, на которые расселяется популяция за одно поколение, можно путем экстраполяции оценить расстояние, на которое она сможет расселиться с течением времени. Теперь же мы видим, что миграция нового аллеля в пространстве и во времени происходит по-разному. В каждом поколении новым аллелем обладает обычно лишь некоторая доля эмигрантов, причём величина этой доли в каждом последующем поколении уменьшается. Генетически эффективный поток генов в той мере, в какой он определяется одной лишь скоростью миграции, ограничен в пространстве гораздо сильнее, чем поэтапная миграция. Генетически эффективный поток генов довольно значительно буксует по сравнению с процессом расселения (см, также Grant, 1980*).
Попытаемся рассмотреть эти выводы применительно к проблеме миграции генов в обширной популяционной системе. Допустим, что эта система протянулась на 1000 км и что отрезок времени составляет 1000 лет. Может ли отдельный ген, не имеющий селективного преимущества, распространиться в этой системе за указанный срок?
Если этот ген принадлежит растению, т. е. сидячему организму, или малоподвижному животному, например улитке, то ответ, очевидно, должен быть отрицательным; скорость их расселения слишком мала, как это видно из табл. 7.5. Высокоподвижное быстро размножающееся животное, подобное дрозофиле, может легко расселиться за предоставленное время на 1000-километровое расстояние путем поэтапной миграции. Её способность к расселению вполне соответствует поставленной задаче. Однако мы не вправе допустить, что генетически эффективный поток генов, составляющий всего лишь часть потенциала расселения, соответствует этой же задаче у того же самого организма.
До сих пор мы считали мигрирующий аллель G2 нейтральным в отношении отбора. Изменим это допущение и придадим ему селективное преимущество перед обычным(и) и широко распространенным(и) в популяционной системе аллелем(ями). Это создаёт комбинацию сил -- поток генов и отбор, которые способствуют распространению аллелей. Однако миграция аллеля G2 всё ещё будет протекать медленно, так как отбор требует времени. Поскольку аллель G2 при проникновении в новую популяцию обладает низкой начальной частотой, понадобится отбор на протяжении многих поколений, для того чтобы его частота повысилась до уровня, обеспечивающего его передачу следующей популяции, и, однажды возникнув, этот процесс должен повторяться вновь и вновь. В случае ступенчатого потока генов под контролем объединенных сил миграции и отбора нам следует принимать во внимание отбор, происходящий на каждой ступени миграции в течение многих поколений.
Здесь эта проблема рассмотрена в качественном аспекте на предварительном уровне. Рассмотрение её в количественном аспекте очень желательно, однако сопряжено с трудностями, так как ступенчатый поток генов представляет собой стохастический процесс или же, что ещё больше осложняет дело, -- ряд стохастических процессов, каждый из которых может привести к весьма разнообразным результатам (Slatkin, личное сообщение).
Заключение
Играет ли поток генов существенную роль в природных популяциях в более широком масштабе, чем локальный? Может ли генетически эффективный поток генов распространить вариации по обширной популяционной системе? В настоящее время по этому вопросу существуют две противоположные точки зрения.
Maйр (Mayr, 1954; 1963; 1970*) -- главный сторонник представления о том, что масштабы и скорость потока генов достаточны для того, чтобы гомогенизировать обширные популяциониые системы. Противоположная точка зрения, которой придерживаются Эрлих и Равен (Ehrlich, Raven, 1969*) и другие авторы (Levin, 1979; 1981; Ehrlich, White, 1980*), состоит в том, что поток генов слишком ограничен, чтобы оказывать сколько-нибудь существенное воздействие за пределами локальной популяции.
Первый взгляд основан на морфологическом единообразии больших популяционных систем широко распространенных видов; второй -- на количественных исследованиях расселения. Ни тот, ни другой не подкреплены убедительными данными. Морфологическое единообразие может быть обусловлено происхождением от общего предка, так же как и потоком генов; что же касается количественных исследований расселения, то они в большинстве случаев ограничиваются, изучением изменений, происходящих в одном поколении.
Анализ, проведенный в этой главе и в других работах (Grant, 1980; 1985; Slatkin, 1981b; 1985*), позволяет, казалось бы, считать, что такие высокоподвижные животные, как дрозофила, соответствуют точке зрения Майра; сидячие растения -- точке зрения Эрлиха и Равена; а организмы других типов занимают промежуточное положение. Однако ввиду неясности количественного аспекта имеющихся данных этот анализ неубедителен. Если генетически эффективный поток генов во времени, сопровождаемый или не сопровождаемый отбором, составляет слишком малую долю расселения, популяции подвижных животных будут соответствовать модели Эрлиха и Равена. Если же расстояния, на которые происходит расселение, существенно больше принятых в настоящее время оценок, то для популяций сидячих растений скорее подходила бы модель Майра.
Информация о работе Мутационный процесс и стабильность генов