Автор работы: Пользователь скрыл имя, 04 Июня 2013 в 17:25, шпаргалка
1.Понятие о регуляции, саморегуляции. Принципы гуморальной и рефлекторной регуляции функций в организме. Нейрогуморальная регуляция.
2. Современные представления о строении и функциях мембран. Активный и пассивный транспорт через мембраны, их роль в формировании мембранного потенциала покоя.
3. Современные представления о процессе возбуждения. Потенциал действия, его фазы. Ионные механизмы потенциала действия.
4. Законы раздражения возбудимых тканей. Полярный закон раздражения (Пфлюгер). Изменения мембранного потенциала под анодом и катодом постоянного тока.
• Альфа-1 — локализуются в артериолах, стимуляция приводит к спазму артериол, повышению давления, снижению сосудистой проницаемости и уменьшению эксудативного воспаления.
• Альфа-2 — локализуются в гипоталамо-гипофизарной зоне, являются «петлёй обратной отрицательной связи» для адренэргической системы, их стимуляция ведёт к снижению артериального давления.
• Бета-1 — локализуются в сердце, стимуляция приводит к увеличению частоты и силы сердечных сокращений, кроме того, приводит к повышению потребности миокарда в кислороде и повышению артериального давления
• Бета-2 — локализуются в бронхиолах, стимуляция вызывает расширение бронхиол и снятие бронхоспазма. Эти же рецепторы находятся на клетках печени, воздействие на них гормона вызывает гликогенолиз и выход глюкозы в кровь.
Холинэргические рецепторы (ацетилхолиновые рецепторы) — трансмембранные рецепторы, лигандом которых является ацетилхолин. Ацетилхолин служит нейротрансмиттером. Нервные волокна, выделяющие ацетилхолин из своих окончаний, называются холинергическими. Синтез ацетилхолина происходит в цитоплазме нервных окончаний; запасы его хранятся в виде пузырьков в пресинаптических терминалях. Возникновение пресинаптического потенциала действия ведет к высвобождению содержимого нескольких сотен пузырьков в синаптическую щель. Ацетилхолин, выделяющийся из этих пузырьков, связывается со специфическими рецепторами на постсинаптической мембране, что повышает ее проницаемость для ионов натрия, калия и кальция и приводит к появлению возбуждающего постсинаптического потенциала. Действие ацетилхолина ограничивается путем его гидролиза с помощью фермента ацетилхолинэстеразы. Никотиновые холинорецепторы: Эффекты ацетилхолина в области преганглионарных синапсов парасимпатической и симпатической систем могут быть воспроизведены с помощью введения алкалоида никотина. Мускариновые холинорецепторы: Действие ацетилхолина в области постганглионарных нервных окончаний воспроизводится с помощью другого алкалоида — мускарина
13. Рецепторный отдел сенсорных систем. Зависимость между силой раздражения и интенсивностью ощущения в рецепторах. ( Закон Вебера и Вебера –Фехнера).
В сенсорной физиологии принято говорить о «рецепторных клетках», или, что то же самое, о «сенсорных рецепторах». Что же касается понятия «сенсорные системы», то оно включает в себя не только периферически расположенные биосенсоры, но и всю систему обработки передаваемых ими сигналов, т.е. мозг. Например, таким образом оптические биосенсоры, или фоторецепторы, превращают оптическое изображение в нейроизображение. Естественно, что в зависимости от физической природы воспринимаемых стимулов, или, как говорят, от их модальности, существуют фоторецепторы (зрительная система), хеморецепторы (обонятельная и вкусовая системы), механорецепторы (фонорецепторы в слуховой системе, рецепторы органов равновесия, рецепторы наружных покровов тела), терморецепторы (в соматосенсорной системе), гигро- и электрорецепторы. Соответственно, рецепторами работают сенсорные системы: со светом — зрительная, с механическими колебаниями в среде — слуховая и акустико-латеральная (органы боковой линии у некоторых водных животных), с идентификацией пищевых веществ — вкусовая, с пахучими сигналами — обонятельная; положение организма в пространстве и ориентацию тела в нем определяет система органов равновесия; механические, температурные и ряд иных характеристик внешней среды оценивает соматосенсорная система (осязание), а электрическую «погоду» в водоем ах — электросенсорная. Как уже говорилось, этими системами в той или иной комбинации снабжены все организмы, но не все системы представлены у человека, да и сам перечень сенсорных рецепторов и систем, возможно, пока не полон. В результате действия адекватного раздражителя у большинства рецепторов увеличивается проницаемость клеточной мембраны для катионов, что приводит к ее деполяризации. Исключением из общего правила являются фоторецепторы, где после поглощения энергии квантов света в связи особенностями управления ионными каналами происходит гиперполяризация мембраны. Изменение величины мембранного потенциала рецепторов в ответ на действие стимула представляет собой рецепторный потенциал — входной сигнал первичных сенсорных нейронов. Если величина рецепторного потенциала достигнет критического уровня деполяризации или превысит его, генерируются потенциалы действия, с помощью которых сенсорные нейроны передают в центральную нервную систему информацию о действующих стимулах. Генерация потенциалов действия происходит в ближайшем к рецепторам перехвате Ранвье миелинизированных волокон или ближайшей к рецепторам части мембраны безмиелинового волокна. Минимальная сила адекватного стимула, достаточная для генерации потенциалов действия в первичном сенсорном нейроне, определяется как его абсолютный порог. Минимальный прирост силы стимула, сопровождающийся значимым изменением реакции сенсорного нейрона, представляет собой дифференциальный порог его чувствительности. Информация о силе действующего на рецепторы стимула кодируется двумя способами: частотой потенциалов действия, возникающих в сенсорном нейроне (частотное кодирование), и числом сенсорных нейронов, возбудившихся в ответ на действие стимула. При увеличении силы действующего на рецепторы раздражителя повышается амплитуда рецепторного потенциала, что, как правило, сопровождается увеличением частоты потенциалов действия в сенсорном нейроне первого порядка. Чем больше первичных сенсорных нейронов возбудится одновременно, тем сильнее будет их совместное действие на общий нейрон второго порядка, что в итоге отразится на субъективной оценке интенсивности действующего раздражителя.
Суть закона
Вебера заключается в том, что
минимальное изменение
Помимо слуховых ощущений, Вебер изучал также осязание и зрение и установил, что для осязания минимальное различие в ощущении тяжести груза не зависит от величины этого груза и составляет ~ 1/30, а для зрения минимальная воспринимаемая разница в интенсивности света также не зависит от величины интенсивности и составляет ~ 1/100.
Вебера —
Фехнера — эмпирический психофизиологический
закон, заключающийся в том, что
интенсивность ощущения пропорциональна
логарифму интенсивности
14 Строение и работа синапсов.
Взаимодействие нейронов между собой (и с эффекторными органами) происходит через специальные образования - синапсы (греч. - контакт). Они образуются концевыми разветвлениями нейрона на теле или отростках другого нейрона. Чем больше синапсов в нервной клетке, тем больше она воспринимает различных раздражений и, следовательно, шире сфера влияний на ее деятельность и возможность участия в разнообразных реакциях организма. Особенно много синапсов в высших отделах нервной системы и именно у нейронов с наиболее сложными функциями. В структуре синапса различают три элемента: 1)пресинаптическую мембрану, образованную утолщением мембраны конечной веточки аксона; 2)синаптическую щель между (или щелевые контакты в электр синапсах); 3)постсинаптическую мембрану - утолщение прилегающей поверхности следующего нейрона. В большинстве случаев передача влияния одного нейрона на другой осуществляется химическим путем. В пресинаптической части контакта имеются синоптические пузырьки, которые содержат специальные вещества - медиаторы или посредники. Ими могут быть ацетилхолин, норадреналин, некоторые аминокислоты и др. Приходящие в окончания аксона нервные импульсы вызывают опорожнение синаптических пузырьков и выведение медиатора в синаптическую щель. По характеру воздействия на последующую нервную клетку различают возбуждающие и тормозящие синапсы. В возбуждающих синапсах медиаторы (например ацетилхолин) связываются со специфическими макромолекулами постсинаптической мембраны и вызывают ее деполяризацию. При этом регистрируется небольшое и кратковременное (около 1 мс) колебание мембранного потенциала в сторону деполяризации или возбуждающий постсинаптический потенциал (ВПСП). Для возбуждения нейрона необходимо, чтобы ВПСП достиг порогового уровня (не менее 10 мВ). Действие медиатора очень кратковременно (1-2 мс). В тормозящих синапсах содержатся тормозные медиаторы (например, гамма-аминомасляная кислота). Их действие на постсинаптическую мембрану вызывает усиление выхода ионов калия из клетки и увеличение поляризации мембраны. При этом регистрируется кратковременное колебание мембранного потенциала в сторону - тормозящий постсинаптический потенциал (ТПСП). В результате нервная клетка оказывается заторможенной. Возбудить ее труднее, чем в исходном состоянии. Для этого понадобится более сильное раздражение, чтобы достичь КУД. Общее изменение мембранного потенциала нейрона является результатом сложного взаимодействия (интеграции) местных ВПСП и ТПСП всех многочисленных активированных синапсов. При одновременном влиянии как возбуждающих, так и тормозящих синапсов происходит алгебраическое суммирование (т.е. взаимное вычитание) их эффектов. При этом возбуждение нейрона возникнет лишь в том случае, если сумма возбуждающих постсинаптических потенциалов окажется больше суммы тормозящих. Это превышение должно составлять определенную пороговую величину (около 10 мВ). Только в этом случае появляется потенциал действия клетки. Возбудимость нейрона зависит от его размеров: чем меньше клетка, тем выше ее возбудимость. появлением потенциала действия начинается процесс проведения нервного импульса по аксону и передача его на следующий нейрон или рабочий орган, т.е. осуществляется эффекторная функция нейрона.
Передача сигнала в синапсе
Приход нервного импульса по аксону вызывает деполяризацию пресинаптической мембраны и изменение ионных токов пре-СМ. Происходит активация потенциалзависимых Са2+-каналов, через которые в терминаль посту¬пает Са2+, взаимодействует с белками, инициирует экзоцитоз и освобождение в синаптическую щель медиатора. Синаптическая везикула подходит к терминали. сливается с ней и выделяет свое содержимое в синаптическую щель. Этот процесс энерго(АТФ)зависим. Са2+ участвует в осуществлении метаболиче¬ских процессов, завершающихся выделением нейромедиатора и нейромодулятора, и в самом выделении нейромедиатора и ней¬ромодулятора. При действии нейромедиатора на ауторецепторы пресинаптической терминали активируется обратная связь, ре¬гулирующая синтез и выделение нейромедиатора. Часть его по¬ступает обратно в терминаль (обратное поступление медиатора). Это поступление совершается с помощью переносчика и, возможно, других медиаторов, а также пу¬тем эндоцитоза. Поступивший обратно медиатор пополняет его содержание в терминали. Энергия, необходимая для деятельнос¬ти терминали, обеспечивается митохондриями. Деятельность терминали и, в частности, выделение нейромедиатора, контро-лируется влияниями другого специального нейрона, которые осуществляются через его терминаль (пресинаптический кон¬троль). Выделившиеся нейромедиатор и нейромодулятор связы¬ваются со своими рецепторами на мембране постсинаптического нейрона. Активация этих рецепторов ведет к открытию ионных каналов и как результат — к возникновению или усилению ион¬ных токов через каналы, что обусловливает возбуждение (или торможение) и включение в реакцию цепи внутриклеточных ме¬таболических процессов в постсинаптическом нейроне. Активи¬рованные рецепторы нейромодуляторов изменяют реактивность рецепторов к нейромедиаторам путем рецептор-рецепторного взаимодействия и через внутриклеточные процессы. Ней¬ромодулятор изменяет также реакцию постсинаптического ней¬рона на нейромедиатор.
Медиатор освобождается приблизительно одинаковыми пор¬циями, соответствующими объему одного пузырька (везикулы), получившими название "квантов" медиатора. При этом ампли-туда возбуждающего постсинаптического тока (ВИСТ) всегда кратна количеству выделенных квантов.
В отсутствие стимуляции нейрона "кванты" медиатора выде¬ляются спонтанно из открывающихся наружу синаптических пу¬зырьков.
От прихода нервного импульса до развития постсинаптиче¬ского ответа в химическом синапсе проходит определенное вре¬мя, получившее название синаптической задержки, которое со-ставляет 0.2—0.5 мс. Основная часть этого времени тратится на процесс секреции медиатора и определяется главным образом временем, необходимым для вхождения кальция внутрь пресинаптического окончания.
Пространственная суммация. Воз¬буждающий постсинаптический ток (ВПСТ) в течение коротко¬го времени входит в нейрон, вызывая местный сдвиг потенциала (ВПСП) постсинаптической мембраны. Часть его выходит из клетки на некотором расстоянии от синапса, например в аксонном холмике. При этом величина одиночного ВПСП электротонически снижается при удалении от синапса. Однако, если ней¬рон имеет два или более синапсов, которые активированы одно¬временно, то токи, генерируемые в этих синапсах, суммируясь, вместе дают более высокий ВПСП. Поскольку в этом случае происходит суммация результатов одновременной активации пространственно разделенных синапсов, говорят о пространст¬венной суммации возбуждения.
Еще совсем недавно казался незыб¬лемым принцип Дейла, который гласил: "Один нейрон — один медиатор", т. е. каждый нейрон выделяет один и тот же медиатор из всех своих, порой далеко удаленных, окончаний. Однако в дальнейшем оказалось, что один нейрон способен использовать несколько медиаторов (на¬пример ацетилхолин + АТФ). Но сочетание медиаторов или меди¬атора и модулятора, видимо, всегда одинаково. Динамический анализ позволил выделить быстрый эффект основного медиато¬ра и, как правило, медленный — модулятора или комедиатора. Теперь модифицированный принцип Дейла звучит так: "Один нейрон — один быстрый медиатор".
!!!В заключение укажем
основные отличия
1. В электрическом синапсе
источник постсинаптического
2. В химическом синапсе
постсинаптический ток
ОСНОВНЫЕ ТИПЫ СИНАПСОВ
Все синапсы можно классифицировать следующим образом:
1) по их местоположению — центральные (головной и спин¬ной мозг) и периферические;
2) по принадлежности к
соответствующим клеткам —
3) по месту контакта
в нейро-нейрональных синапсах
— аксо-аксональные, аксо-
4) по расположению относительно
друг друга (Г. Шеперд) — последовательные
синапсы, реципроктные синапсы,
5) по развитию в онтогенезе — стабильные (например синап¬сы дуг безусловных рефлексов) и динамические (появляются в процессе индивидуального развития);
6) по знаку их действия — возбуждающие и тормозящие;
7) по способу передачи сигнала — электрические (в которых сигналы передаются электрическим током) и химические (в ко¬торых передатчиком или посредником является то или иное фи¬зиологически активное вещество). Существуют и смешанные — электрохимические — синапсы;
8) химические синапсы
15. Основные принципы
интегративно-координационной
Проникающие во
все внутренние органы нервы вместе
с центральными отделами обеспечивают
согласованную и объединенную работу
всех частей организма. Таким образом,
нервная система выполняет
Во всех нервных
системах обнаружены дивергенция и
кон¬вергенция путей и
Дивергенция пути — это контактирование одного нейрона со множеством нейронов более высокого порядка. Афферент¬ные волокна периферических рецепторов, которые входят в спинной мозг в составе дорсальных корешков, затем ветвятся на множество веточек (коллатералей), идущих к разным сегментам спинного мозга и в головной мозг, где происходит передача на вставочные и далее на моторные нейроны.
Дивергенции пути обеспечивает расширение сферы дейст¬вия сигнала. Это называется иррадиацией возбуждения (или торможения). Благодаря этому явлению информация поступа¬ет к разным участкам ЦНС.