Шпаргалка по "Биологии"

Автор работы: Пользователь скрыл имя, 19 Сентября 2014 в 18:53, шпаргалка

Описание работы

Предмет биологии в мед. ВУЗе. Биология как одна из теоретических основ медицины, ее задачи, объект и методы исследования. Биологические науки.
Развитие представлений о сущности жизни. Определение жизни. Гипотезы о происхождении жизни. Главные этапы возникновения и развития жизни. Иерархические уровни организации жизни.

Файлы: 1 файл

ekzamenbi.docx

— 625.65 Кб (Скачать файл)

 

В женской консультации беременную обязательно проверяют на резус-фактор. Если он отрицательный, необходимо определить резусную принадлежность отца. При риске резус-конфликта (у отца положительный резус-фактор) кровь женщины неоднократно за время беременности исследуется на наличие резус - антител. Если их нет, значит, женщина не сенсибилизирована и в эту беременность резус-конфликта не произойдет. Сразу после родов определяют резус-фактор у младенца. Если он положительный, то не позднее 72 часов после родов матери вводят антирезусный иммуноглобулин, который предупредит развитие резус-конфликта в последующую беременность. Вы поступите благоразумно, если, отправляясь в роддом, захватите с собой анти-Д-иммуноглобулин (разумеется, если у вас отрицательный резус фактор).

 

Такую же профилактику иммуноглобулином резус-отрицательные женщины должны проводить в течение 72 часов после:

 

 § внематочной беременности

 § аборта

 § выкидыша

 § переливания резус-положительной крови

 § переливания тромбоцитарной массы

 § отслойки плаценты

 § травмы у беременной

 

18. Основные положения хромосомной  теории наследственности. Хромосомы  как группы сцепления генов. Локализация  некоторых генов в хромосомах  человека. Генетические, цитологические  и секвенсовые карты хромосом. Научное значение картирования  хромосом. 

 

Хромосомная теория наследственности. Правила постоянства числа, парности, индивидуальности и непрерывности хромосом, сложное поведение хромосом при митозе и мейозе давно убедили исследователей в том, что хромосомы играют большую биологическую роль и имеют прямое отношение к передаче наследственных свойств. В предыдущих разделах уже были даны цитологические объяснения закономерностей наследования, открытых Менделем. Роль хромосом в передаче наследственной информации была доказана благодаря; а) открытию генетического определения пола; б) установлению групп сцепления признаков, соответствующих числу хромосом;

в) построению генетических, а затем и цитологических карт хромосом.

Наследование пола и хромосомы. Одним из первых и веских доказательств роли хромосом в явлениях наследственности явилось открытие закономерности, согласно которой пол наследуется как менделирующий признак, т.е. наследуется по законам Менделя.

Известно, что хромосомы, составляющие одну гомологичную пару, совершенно подобны друг другу, но это справедливо лишь в отношении аутосом. Половые хромосомы, или гетерохромосомы, могут сильно разниться между собой как по морфологии, так и по заключенной в них генетической информации. Сочетание половых хромосом в зиготе определяет пол будущего организма. Большую из хромосом этой пары принято называть X (икс)-хромосомой, меньшую - Y (игрек)-хромосомой. У некоторых животных Y-хромосома может отсутствовать.

У всех млекопитающих (в том числе у человека), у дрозофилы и многих других видов животных женские особи в соматических клетках имеют две X-хромосомы, а мужские - Х- и Y-хромосомы. У этих организмов все яйцевые клетки содержат Х-хромосомы, и в этом отношении все одинаковы. Сперматозооны у них образуются двух типов: одни содержат Х-хромосому, другие Y-хромосому, поэтому при оплодотворении возможны две комбинации:

1. Яйцеклетка, содержащая  Х-хромосому, оплодотворяется сперматозооном  тоже с Х-хромосомой. В зиготе  встречаются две Х-хромосомы. Из  такой зиготы развивается женская  особь.

2. Яйцеклетка, содержащая  Х-хромосому, оплодотворяется сперматозооном, несущим Y-хромосому. В зиготе сочетаются Х- и Y-хромосомы. Из такой зиготы развивается мужской организм.

Пол, имеющий обе одинаковые половые хромосомы, называется гомогаметмым, так как все гаметы одинаковые, а пол с различными половыми хромосомами, при котором образуются два типа гамет, называется гетерогаметным.

Наследование, сцепленное с полом. Признаки, наследуемые через половые хромосомы, получили название сцепленных с полом. У человека признаки, наследуемые через Y-хромосому, могут быть только у лиц мужского пола, а наследуемые через Х-хромосому - у лиц как одного, так и другого пола. Лицо женского пола может быть как гомо-, так и гетерозиготным по генам, локализованным в Х-хромосоме, а рецессивные аллели генов у него проявляются только в гомозиготном состоянии. Поскольку у лиц мужского пола только одна Х-хромосома, все локализованные в ней гены, даже рецессивные, сразу же проявляются в фенотипе. Такой организм называют гемизиготным.

При записи схемы передачи признаков, сцепленных с полом, в генетических формулах наряду с символами генов указывают и половые хромосомы.

Признаки, которые наследуются через Y-хромосому, получили название голандрических. Они передаются от отца всем его сыновьям. К числу таких у человека относится признак, проявляющийся в интенсивном развитии волос на крае ушной раковины.

Сцепление генов а кроссинговер. Во всех примерах скрещивания, которые приводились выше, имело место независимое комбинирование генов, относящихся к различным аллельным парам. Оно возможно только потому, что рассматриваемые нами гены локализованы в различных парах хромосом. Однако число генов значительно превосходит число хромосом. Следовательно, в каждой хромосоме локализовано много Генов, наследующихся совместно. Гены, локализованные в одной хромосоме, называются группой сцепления. Понятно, что у каждого вида организмов число групп сцепления равняется числу пар хромосом, т. е. у дрозофилы их 4, у гороха - 7., у кукурузы - 10, у томата - 12 и т. д. Следовательно, установленный Менделем принцип независимого наследования и комбинирования признаков проявляется только тогда, когда гены, определяющие эти признаки, находятся в разных парах хромосом (относятся к различным группам сцепления).

Однако оказалось, что гены, находящиеся в одной хромосоме, сцеплены не абсолютно. Во время мейоза, при конъюгации хромосом гомологичные хромосомы обмениваются идентичными участками. Этот процесс получил название кроссинговера, или перекреста. Кроссинговер может произойти в любом участке хромосомы, даже в нескольких местах одной хромосомы. Чем дальше друг от друга расположены локусы в одной хромосоме, тем чаще между ними следует ожидать перекрест и обмен участками.

Обмен. участками между гомологичными хромосомами имеет большое значение для эволюции, так как непомерно увеличивает возможности комбинативной изменчивости. Вследствие перекреста отбор в процессе эволюции идет не по целым группам сцепления, а по группам генов и даже отдельным генам. Ведь в одной группе сцепления могут находиться гены, кодирующие наряду с адаптивными (прнспособительными) и неадаптивные состояния признаков. В результате перекреста «полезные» для организма аллели могут быть отделены от «вредных» и, следовательно, возникнут более выгодные для существования вида генные комбинации - адаптивные.

Примером тесного сцепления генов у человека может служить наследование резус-фактора. Оно обусловлено тремя парами генов С, Д, К., тесно сцепленных между собой, поэтому наследование его происходит по типу моногибридного скрещивания. Резус-положительный фактор обусловлен доминантными аллелями. Поэтому при браке женщины, имеющей резус-отрицательную группу крови, с мужчиной, у которого резус-фактор положительный, если он гомозиготен, все дети будут резус-положительными; если гетерозиготен, следует ожидать расщепления по этому признаку в соотношении

Точно так же близко расположены в Х-хромосоме гены гемофилии и дальтонизма. Если уж они есть, то наследуются вместе, а находящиеся в той же хромосоме гены альбинизма локализованы на значительном расстоянии от гена дальтонизма и могут дать с ним высокий процент перекреста.

Линейное расположение генов. Генетические карты. Существование кроссинговера позволило школе Моргана разработать в 1911-1914 гг. принцип построения генетических карт хромосом. В основу этого принципа положено представление о расположении генов по длине хромосомы в линейном порядке. За единицу расстояния между двумя генами условились принимать 1 % перекреста между ними. Эту величину называют морганидой. в честь генетика Т.Г. Моргана.

Допустим, что к одной группе сцепления относятся гены А и В. Между ними обнаружен перекрест в 10%. Следовательно, эти гены находятся на расстоянии 10 единиц (морганид). Допустим далее, что к этой же группе сцепления относится ген С. Чтобы узнать его место в хромосоме, необходимо выяснить, какой процент перекреста он дает с обоими из двух уже известных генов. Например, если с А он дает 3% перекреста, то можно предположить, что ген С находится либо между А и В, либо в противоположной стороне, т.е. А расположен между С и В.

В общей форме эту закономерность можно выразить следующей формулой: если гены А, В, С относятся к одной группе сцепления и расстояние между генами А и В равно k единицам, а расстояние между В и С равно l единицам, то расстояние между A и С может быть либо k+l, либо k–l.

Начато составление карт хромосом человека. Уже известны 24 группы сцепления: 22 аутосомные и 2 сцепленные с полом в Х- и Y-хромосомах.

Генетические карты хромосом строятся на основе гибридологического анализа. Однако найден способ построения и цитологических карт хромосом для дрозофилы. Дело в том, что в клетках слюнных желез личинок мух обнаружены гигантские хромосомы, превышающие размеры хромосом из других клеток в 100-200 раз и содержащие в 1000 раз больше хромонем. Оказалось, что в тех случаях, когда гибридологическим методом обнаруживались какие-либо нарушения наследования, соответствующие им изменения имели место и в гигантских хромосомах. Так, в результате сопоставления генетических и цитологических данных стало возможным построить цитологические карты хромосом. Это открытие подтверждает правильность тех принципов, которые были положены в основу построения генетических карт хромосом.

Метод картирования хромосом человека. Установить группы сцепления, а тем более построить карты хромосом человека, пользуясь традиционными методами, принятыми для всех других эукариотов (растений и животных), практически невозможно. Тем не менее в построении карт хромосом человека достигнут значительный прогресс, благодаря использованию нового метода- гибридизации соматических клеток грызунов и человека в культуре ткани. Оказалось, что если в культуре смешать, клетки мыши и человека, то можно получить гибридные клетки, содержащие хромосомы одного и другого вида. В норме клетки мыши имеют 40 хромосом, человека, как известно,- 46 хромосом. В гибридных клетках следует ожидать суммарное число хромосом - 86, но обычно этого не бывает и чаще всего гибридные клетки содержат от 41 до 55 хромосом. При этом, как правило, в гибридных клетках хромосомы мыши сохраняются все, а утрачиваются какие-либо хромосомы человека; потеря тех или иных из хромосом случайна, поэтому гибридные клетки имеют разные наборы хромосом.

В гибридных клетках хромосомы как мыши, так и человека функционируют, синтезируя соответствующие белки. Морфологически каждую из хромосом мыши и человека можно отличить и установить, какие именно хромосомы человека присутствуют в данном конкретном наборе, и, следовательно, выяснить, синтез каких белков связан с генами данных хромосом. Гибридные клетки обычно теряют ту или иную хромосому человека целиком. Это дает возможность считать, что если какие-либо гены присутствуют или отсутствуют постоянно вместе, то они должны быть отнесены к одной группе сцепления. Этим методом удалось установить все возможные для человека группы сцепления. Далее, в ряде случаев, используя хромосомные аберрации (транслокации и нехватки), можно определить расположение генов в том или ином участке хромосом, выяснить последовательность их расположения, т. е. построить карты хромосом человека.

Наибольшее число генов удалось локализовать в Х-хромосоме, где их известно 95, в наиболее крупной из аутосом – первой - 24 гена. Ген, определяющий группы крови по системе АВ0, оказался в девятой хромосоме, определяющий группы крови по системе MN - во второй, а по группе крови системы резус-фактора (Rh) - а первой хромосоме. В этой же хромосоме локализован  ген элиптоцитоза (El), доминантный аллель которого кодирует овальную форму эритроцитов. Расстояние между локусами Rh и El равно 3%. Локализация патологических генов во всех хромосомах человека имеет большое значение для медицинской генетики.

Основные положения хромосомной теории наследственности. Закономерности, открытые школой Моргана, а затем подтвержденные и углубленные на многочисленных объектах, известны под общим названием хромосомной теории наследственности. Основные положения ее следующие:

1. Гены находятся в  хромосомах. Каждая хромосома представляет  собой группу сцепления генов. Число групп сцепления у каждого  вида равно гаплоидному числу  хромосом.

2. Каждый ген в хромосоме  занимает определенное место (локус). Гены в хромосомах расположены  линейно.

3. Между гомологичными  хромосомами может происходить  обмен аллельными генами.

4. Расстояние между генами  в хромосоме пропорционально  проценту кроссинговера между  ними.

 

19. Доказательства роли ДНК в  передаче наследственной информации (опыты по трансформации и  трансдукции у бактерий).

 

Генетические явления на молекулярном уровне (основы молекулярной генетики). Хромосомная теория наследственности закрепила за генами роль элементарных наследственных единиц, локализованных в хромосомах. Однако химическая природа гена долго еще оставалась неясной. В настоящее время известно, что носителем наследственной информации является ДНК.

Убедительные доказательства того, что именно с ДНК связана передача наследственной информации, получены при изучении вирусов. Проникая в клетку, они вводят в нее лишь нуклеиновую кислоту с очень небольшой примесью белка, а вся белковая оболочка остается вне зараженной клетки. Следовательно, введенная в клетку ДНК передает генетическую информацию, необходимую для образования нового поколения вируса такого же вида.

Далее было обнаружено, что чистая нуклеиновая кислота вируса табачной мозаики может заразить растения, вызывая типичную картину заболевания. Более того, удалось искусственно создать вегетативные «гибриды» из вирусов, в которых белковый футляр принадлежал одному виду, а нуклеиновая кислота - другому. В таких случаях генетическая информация «гибридов» всегда в точности соответствовала тому вирусу, чья нуклеиновая кислота входила в состав «гибрида».

Информация о работе Шпаргалка по "Биологии"