Автор работы: Пользователь скрыл имя, 17 Февраля 2015 в 16:51, реферат
Биотехнология – экономикалық маңызды заттар өндіру үшін, өсімдіктердің жаңа сорттарын, жануарлардың жаңа түрлерін, микроорганизмдердің штаммаларын алу үшін биологиялық процестер мен объектілерді пайдаланатын ғылым мен өндірістің жаңа саласы.
Биотехнологияның негізгі мақсаты - мәдени өсімдіктердің жаңа сорттарын шығаруға қажет селекциялық материалды аз уақыт ішінде алу үшін өсімдік жасушаларын өсіру.
Кіріспе
1 Жасушаларды культивациялаудың түсінігі
2 Өсімдік жасушаларын жасанды қоректік ортада өсіру әдістері
2.1 Каллусты алу және оны қолдан өсіру.
2.2 Сұйық ортада жасушаларды қолдан өсіру.
2.3 Суспензионды жасушаларды алу.
3 Жасанды қоректік ортада өсетін жасушалардың биологиясы
3.1 Өсірілген жасушалардың әртектілігі.
4 Өсімдік жасушаларын биосинтездік өнеркәсіпте пайдалану
5 Жасушаларды өсіру жүйелері
5.1 Иммобильденген жасушалар.
5.2 Қосымша заттарды алу үшін жасушалық технологияларды дайындау жұмысының кезеңдері:
Пайдаланылған әдебиеттер тізімі
3 Жасанды қоректік
ортада өсетін жасушалардың
Кез-келген өсімдік ұлпасы қолайлы қоректік ортаға түскеннен кейін бөліне бастайды да дифференциалданбаған жасушалар түзіліп каллус пайда болады. Бұл ұлпаның бөлінуін тоқтатқан дифференциалданған жасушалары қайтадан бөліне бастайды дегенді білдіреді.
Маманданған бөлінбейтін жасушалардың пролиферацияға өтуі олардың дедифференциациясымен байланысты, басқаша айтқанда-мамандануын жоғалту. Осы процестің негізінде дифференциациялық белсенді гендер жатыр. Жасушалардың қызметі мен құрылымы гендердің белсенділігімен анықталады. Егер жасушалардың қызметі мен құрылымы жағынан айырмашылықтары болса, онда олардың гендерінің экспрессиядағы айырмашылықтарына байланысты, яғни мамандану әртүрлі жасушалардағы әртүрлі гендердің қатысуымен қамтамасыз етіледі. Әдетте гендердің пуласының біраз бөлігі (5%) ғана белсенді болып келеді. Гендер берілген мүшеде, ұлпада, жасушада, Сонымен қатар тек белгілі бір жаста немесе сыртқы ортаның өзгерісінің әсеріне байланысты қызмет жасай бастаған гендер белсенді гендер құрамына кіреді. Қызметтік мамандануына байланысты өсімдік ұлпалары мен жасушалары арасындағы физиологиялық және құрылымдық ерекшеліктердің пайда болуы дифференциация процесі деп аталады. Дифференциация ұғымы эмбриондық және меристемалық жасушалардың маманданған жасушаларға айналуын көрсетеді. Меристемалық жасушалар құрылымы мен қызметі жағынан бірдей және әртүрлі мүшелердің ұлпаларын қалыптастырып әртүрлі жолдармен дамиды. Мұның қалай жүзеге асатыны клеткалық биологияның маңызды сауалдарының бірі.
3.1 Өсірілген жасушалардың әртектілігі.
Өсірілетін жасушалардың негізгі түрі каллус жасушалары. Каллустық ұлпалар өсу циклінде бөлінуден кейін жасушаға тән онтогенезге өтеді, яғни өсе бастайды, содан кейін ескі каллустық жасушалар сияқты дифференциалданады, қартаяды, тіршілігін жояды. Өсіп келе жатқан каллуста барлық жасушалар бөлінбейді, бұл қою тығыз цитоплазмасы бар және вакуольсіз меристема жасушаларына ұқсас болады.
Өсіру жағдайына байланысты популяциядағы жасушалар қатынасы өзгеріп отырады. Мысалы, каллусты жаңа қоректік ортаға жиі көшіріп отырса, олардың ішінде қарқынды бөлінетін майда жасушалар әрдайым басым болады. Каллустық жасушалардың морфологиялық жағынан, биохимиялық құрамы бойынша, физиологиялық жағдайы және генетикалық жағынан айырмашылықтары болады.
Каллустық жасушалардық өткен ұлпаның жасушаларынан өлшемі мен пішіні жағынан ерекшеліктері болады, бұларда ядроның саны мен пішіні өзгереді. Ескі каллустық жасушалар ірі болады (500-1000 мкм), ал жас жасушалар үсақ болады (15-30 мкм). Қоректік ортада цитокинин болмаса жасушалардың көлемі ұлғаяды. Жасушалар мен ядролардың қалпы мен көлемдерінің өзгеруі көбінесе плоидтылықтық (хромосомалар саны) өсуіне байланысты. Жасушаларды ұзақ өсіргенде олардың плоидтылығы ұдайы арта береді.
Өсірген жасушалардың полиморфизмі әр түрлі факторларға байланысты: түрінің және жасының ерекшеліктері, плоидтылығы, қоректік ортаның және өсіру жағдайының әсері коррелятивтік байланыстардың жойылуы. Соңғы фактор, яғни бүтін өсімдікте болған қатаң реттелудің бұзылуы, жасушаларда in vitro жағдайында өздігінен өзгергіштік пайда болудың негізгі себебі. Қандай эксплант болса да, ол неше түрлі ұлпалапынан түзілген калустар бір-біріне ұқсамай, әртекті келеді. Ал табиғатта барлық қасиеттері бірдец эксплант болмайды, сондықтан да өсірген жасушалар бірсапалы болмайды.
Физиология жағынан жасушалардың әртектілігі олардың «ртүрлі физиологиялық күйінде болуына (яғни бөліну, өсу, қартаю, құру) байланысты. Мұндай жасуша популяциясы асинхронды деп аталады. Популяцияны синхронды болғызу, яғги барлық жасушалардың жасуша циклінің бір кезеңінде болуы тіпті мүмкін емес. Себебі, бөлінетін жасушалардың саны 2-4% амасында болады. бөлінетін жасушалардың санын көбейту жолдары бар. Мысалы, бөлінуді тоқтататын қолайсыз жағдайлар (температура, қоректік ортадан маңызды затарды шығарып тастау) бөлінуге дайын тұрған жасушалардың санын белгілі дәрежеде арттыруға мүмкіндік туғызады. Жасуша циклінің кезеңдерін тежейтін кейбір химиялық заттар да популяцияны синхрондандыруға тиімді келеді. Ең жақсы дегенде, жасушалардың 10-30% синхрондануы мүмкін, бірақ тез уақытта ол тағы да төмендейді. Бұл жерде мынаны атап өту қажет. Сұйық ортада өсірген жасушалардың физиологиялық айырмашылықтары азырақ болады. себебі, үзбей араластырып тұрған сұйық ортада қоректену жағдайы, аэрациясы және уытты заттардың әкетілуі барлық жасушаларға бірдей болады.
Өсірген жасушалардың әртектілігіне генетикалық, эпигенетикалық және модификациялық өзгергіштік те себеп болады. генетикалық, яғни мутауиялық өзгерістер, генотиптің өзгеруіне әкеледі де, тұқым қуалайды. Мутация гендік, хромосомалық және геномдық деңгейінде өтеді. Гендік немесе нүктелік мутациялар жасушалардың морфологиялық, биохимиялық және физиологиялық қасиеттерінің өзгеруіне әкеледі.
Генетикалық өзгергіштіктің себептері әр алуан: 1) алғашқы эксплантты өсімдіктен бөліп алғанда коррелятивті байланыстардың бұзылуы, яғни организмнің бақылауы болмауы; 2) қоректік ортаның компоненттерінің әсері; 3) қоректік ортада жиналатын метаболизм өнімдерінің әсері; 4) бастапқы экспланттың өзіндегі әртектілік және белгілі бір жасушлардың селекциясы.
Хромосомалық өзгергіштік митоздың бұзылуы салдарынан (эндомитоз бен эндоредупликация) пайда болады. эндомитозда хромосомалар шиыршықталып бұратылады, бірақ ядроның қабығы сақталады, ұршық бұзылады, хромосомалар ажырамайды, олардың деспирализайиясы өтеді. Сондықтан, хромосомалардың саны көбейеді, ядро мен жасушаның көлемі ұлғаяды. Эндоредупликацияда ДНҚ-ның мөлшері ядрода көбейсе де хромосомалар екі еселенбейді де ядро бөлінбейді. Сонымен қатар митоздың бұзылуына байланысты хромосомалар дұрыс таратылмауы себебінен де полиплоидтық және анеуплоидтық жасушалар пайда болады.
Жасушалардың бөліну мен өсу жылдамдығы, қолайсыз жағдайларға төзімділігі олардың плоидтылығына байланысты. Соның салдарынан жасушалардың арасында бәсеке басталып, кейбіреулері басым өсе бастайды. Осындай популяциядағы жасушалардың белгілі бір типі үнемі басым өсуін клеткалық селекция деп атайды. Басым өсу кейбір жасушалардың пролиферациясымен немесе басқа бір жасушалардың элиминациясымен сипатталады. Мұндай селекцияны автоселекция деп атаған дұрыс, өйткені ол популяцияда өздігінен өтеді, сырттан стресс факторлар әсер етпейді. Автоселекция процесінде осы жағдайға ең жақы бейімделген кариотип қалыптасады. Мүмкін, жасушалар жаңа жағдайға бейімді болғаны тіршілікке икемді полиплоидтық жасушаларды сұрыптау арқасында пайда болады. өсіру жағдайы өзгергенде сұрыптау бағыты да ауысады. 2,4-Д мен кинетиннің жоғары концентрациялары полиплоидтену мүмкіншілігін арттырады.
4 Өсімдік жасушаларын
биосинтездік өнеркәсіпте
Өсімдіктерде алуан түрлі қосымша заттар синтезделеді. Қосымша заттар деп аталса да олардың өсімдіктегі зат алмасудағы орны зор. Олардың көптегені медицинада, техникада, тамақ және парфюмерия өнеркәсібінде, ауыл шаруашылығында кең пайдаланылады.
Өсірген жасушалардың қосымша заттарының арасында бірінші болып өздеріне зерттеушілердің назарын аудартқан алкалоидтар еді. Қызғылт қабіршөптің, жылан раувольфияның, қара мендуанасының, сасық меңдуанасының т.с.с. өсімдіктердің каллустарын талдаанда олардың құрамында әр түрлі алкалоидтар болатыны анықталды. Көптеген ғалымдардың зерттеулері арқасында каллустардың басқа да активті заттарды синтездеуге қабілеті бар екендігі жөнінде талай бағалы деректер жиналды. Жасушалар in vitro жағдайында әр өсімдік түріне тән қосымша заттарды синтездеу қабілетін сақтап қалады. Атап айтқанда, алкалоидтарды, терпеноидтарды, гликозидтарды, полифенолдарды, полисахаридтерді, эфир майларын, ерекше петидтер мен белоктарды, таза бояғыш заттарды, стероидтарды, дәм татымдық заттарды, биоинсектицидтарды, балауыздарды, витаминдерді синтездейді.
Маңызды заттарды синтездейтін жасушаларды өсіру биотехнологияның жаңа саласы. Дағдылы биотехнологиялар бағалы биологиялық активті заттарды алу үшін бүтін организмдерді пайдаланса (өсімдіктерді, жануарларды), осы заманғы биотехнологиясы ерікті немесе иммобилизденген өсімдік жасушаларын өсіруге сүйенген жасушалық технологияларға негізделген.
Жасушалардың in vitro жағдайында биотрансформация жүргізуге мүмкіншілігі болатындығы дәлелденген, яғни кейбір биологиялық активті заттар арзан қарапайым бастаушы заттардан синтезделеді. Бұл қарапайым бастаушы заттар химиялық немесе микробиологиялық жолмен өзгертіле алмайды, тек қана өсірілетін жасушалардың ферменттерінің ықпалымен ақырғы бағалы өнімге айналып кетеді.
Қоректік ортаның құрамы және басқа өсіру жағдайлары өзгеруі арқасында синтезделетін өнімдердің мөлшері тұрмақ сапасы да өзгереді. Соның нәтижесінде мүлде жаңа, негізінде басқаша әсер ететін қосылыстар пайда болуы мүмкін. Мысалы, жапон ғалымдары in vitro жағдайында ерекше пептидтерді, ісікке қарсы ем болатын қосылыстарды, убихинон-10 сияқты жаңа биологиялық активті заттарды алуда мол табысқа жеткен. Келешекте жасушалық битехнология иммобильденген өсімдік жасушаларын пайдаланатын болады.
Өнеркәсіпте өсіруге жарайтын жасушалар жабайы мен екпе дәрілік және техникалық өсімдіктердің, микробиологиялық өңдірістің және химиялық синтездің бәсекесінен озып шығуы қажет. Дағдылы өсімдіктер шикі затымен салыстырғанда өсірілетін жасушалардың мынадай артықшылықтары болады: 1) қоршаған ортаның әр түрлі факторларының (климат, маусым, ауа райы, топырақ жағдайы, зиянкестер) ықпалынан тәуелсіздік; 2) өсіру жағдайларын өте жақсы деңгейде үзбей қамтамасыз ету арқасында өнімнің мөлшері мен сапасы жоғары; 3) егіс көлемі үнемделеді.
Өсімдіктер көптеген маңызды заттардың бірден-бір қайнар көзі болып келеді. Бірақ өсімдік шикі затының қоры табиғатта таусылып бара жатыр. Осыны еске алғанда, жасушалық технологиялардың орны болашақта ерекше зор екенін түсінуге болады. жасушалық технологиялардың ғылыми лабораториялық зерттеулерден соң өнеркәсіпте қолданылуы қазір ғана басталып келе жатыр. Тиімділігі жоғары технологиялардың жасалуы өсімдіктерде қосымша зат алмасу процестерінің генетикалық, биохимиялық, физиологиялық реттелуі жөніндегі теориялық білімнің жетіспеушілігімен шектеліп тұр. Себебі бүтін өсімдіктегі зат алмасуында қосымша заттардың қызметі толық зерттеліп бітпеген. Көпшілігінің негізгі функциясы өсімдікті әр түрлі стресс факторларынан қорғау, яғни олар реттеушілер ретінде организмнің тіршілік әрекетін қамтамасыз етуі мүмкін.
In vitro жағдайында өсетін
жасушалар – жаңа жасанды жүйе,
оның ерекшеліктері әлі аз
зерттелген. Кейде өсірген жасушалардың
зат алмасуында филогенез
In vitro жағдайында өскенде
де жасушалар белгілі бір
Қосымша заттардың биосинтезін жасушаның дифференциялануымен бақылау жөніндегі деректер әр қилы. Бірқатар тәжірибелерде қосымша заттардың синтезі морфогендік құрылымдар пайда болғанда ғана басталса, басқаларында қажетті заттардың жоғары өнімі дифференцияланбаған каллус ұлпаларында байқалған.
Бастапқы өсімдіктің, яғни эксплант алынатын донор өсімдіктің генотипі өсірген жасушалардың биосинтездік потенциалына елеулі ықпал етеді. М.Ценк қызметтестерімен қызғылт қабыршөптің (Catharantus roseus) жасушаларын өсіру үшін бірнеше географиялық аймақтан 184 тұқым үлгісін жинап алған. Осы тұқымдардан шыққан өскіндер арасынан серпентин мен аймалицин деген гипотензивтік индолдық алкалоидтарға өте бай (құрғақ массасына 0,7%) бірнеше өскіндер таңдап алынды. Солардан шыққан каллустар қажетті алкалоидтарды басқа өскіндерден алынған каллустарға қарағанда 4-5 есе артық синтезделген.
Бірақ У.Роллер осы өсімдікпен өткізген өзінің тәжірибелерінде мұндай байланыстылықты таба алмады.
Жапон ғалымдары да маралотының (Thalictrum minus) бүтін өсімдіктері мен каллустарында берберин деген алкалоидтың мөлшерінде корреляциясын байқамады. Бәлкім нәтижелердің мұндай қайшы болуы алғашқы генотиптің тек фенотип арқылы бағалануына байланысты.
З.Б.Шамина қызметтестерімен апиын көкнар (Papaver somniferum) жасушаларын изогендік өсімдіктер линиясынан шығарып алған. Сабақ ұшындағы меристема жасушаларын бір мезгілде әр түрлі, бірақ жасы бірдей өсімдіктерден бөліп алып, бірдей ортада өсірді. Сондағы шыққан каллустардың өсу және алкалоидтарды синтездеу жағынан айырмашылықтары айтарлықтай болған.
А.Киннесли мен Д.Дугэлл екі темекі өсімдігінен (Nicotiana tabacum) шығарған каллустарда никотин мөлшерінен айырмашылығы екі өсімдік бір-бірінен тек никотин мөлшерінен айырмашылығы болған, басқа локустары изогендік еді. Никотинді көбірек синтездейтін өсімдіктен шыққан каллус сол қабілетін сақтап қалған.
Келтірілген деректер біршама қайшы болсада, көптеген зерттеушілер әдеттегідей ұлпаның генетикалық сипаттамасына көңіл қояды. Бірақ кей кезде өсіруге алынған ұлпада қажетті заттың мөлшері жоғары болуы оның осы ұлпада қажетті заттың мөлшері жоғары болуы оның осы ұлпада синтезделмей, тек басқа ұлпалардан тасымалданып жеткізілгенін көрсетуі мүмкін. Сондықтан өсіруге алынған экспланттың тегіне де назар аударылады. Мысалы, диоскореяның (Dioscorea floribunda) түйінінен алынған жасушаларын өсіргенде, оларда диосгениннің мөлшері өркеннің алынған жасушалармен салыстырғанда он есе артық болған. Алайда, көбінесе жасушалар өсірген кезде қосымша заттарды синтездеуге тотипотентті келеді, яғни көрінген жасуша лайықты жағдай жасалса өзі бөлініп алынған өсімдікке тән заттарды синтездей алады. Себебі қосымша метаболиттердің синтезін реттейтін гендер әдетте оларды синтездемейтін жасушаларында да бар. Қай кезде жасушалардың биосинтездік қабілеті регенерант өсімдіктерде бүрынғы қалпына келеді. Мысалы, оймақгүлдің (Diqitalis lanata) жасушалары ұзақ мерзім өсіргенде гликозидтерді синтездеу қабілетін бұрынғы қалпына түскен.
Информация о работе Өсімдік жасушаларын биосинтездік өнеркәсіпте пайдалану