Автор работы: Пользователь скрыл имя, 29 Августа 2013 в 17:02, курс лекций
Лекция1. Введение в дисциплину: понятие о качестве и потерях сельскохозяйственных продуктов, научные основы
хранения и переработки продукции растениеводства .…
Лекция2 . Хранение зерна и семян.
Лекция3 . Хранение картофеля, овощей и плодов.
Лекция4 . Переработка зерна и маслосемян.
Лекция5 . Переработка овощей и плодов.
К сорной примеси относят минеральную примесь (земля, песок, галька), органическую (солома, полова), семена сорняков и культурных растений, не отнесенных к зерновой примеси, испорченное зерно основной культуры (загнившее, заплесневевшее, с полностью выеденным эндоспермом) и вредную примесь. Вредная примесь выявляется и нормируется отдельно (ограничительные нормы по ее содержанию очень жесткие), так как она является ядовитой для человека и животных. Это семена некоторых видов сорняков, содержащих токсичные гликозиды, и зерно, пораженное опасными болезнями, например, спорыньей и головней.
1.3.5. Натура.
Это масса зерна в определенном объеме, чаще всего измеряется в граммах на 1 литр (г/л). Натура определяется для зерна хлебных злаков. Различная натура пшеницы, ржи, ячменя и овса объясняется неодинаковой плотностью укладки и плотностью разных частей зерна. В связи с этим голозерные культуры (пшеница и рожь) имеют более высокую натуру, чем пленчатые (ячмень и овес). Кроме того, натура определяется различной выполненностью зерна, влажностью и засоренностью. Выполненность зерна имеет большое технологическое значение. В выполненном зерне (с высокой натурой) содержится больше эндосперма (ядра) и меньше доля оболочек, а значит больше выход муки и крупы при переработке. Таким образом, натура характеризует мукомольные и крупяные качества зерна.
Натуру определяют на специальных приборах – пурках. Показатели натуры (объемной массы) используют для примерного расчета потребной вместимости силосов и складов или для приблизительного определения физической массы хранимой партии зерна. Для высоконатурного зерна, по сравнению с низконатурным, требуется меньшая складская емкость.
Натура зерна пшеницы в
700-720 г/л, ячменя – 600-630 г/л, овса – 460-500
г/л.
1.4. Характеристика хлебопекарных свойств мягкой пшеницы
Главными технологическими показателями, определяющими хлебопекарные свойства зерна мягкой пшеницы, являются массовая доля белка и сырой клейковины, а также качество клейковины.
Клейковина – это комплекс белковых веществ зерна, способных при набухании в воде образовывать связную эластичную массу. Ее выделяют из теста отмыванием водорастворимых веществ, крахмала и клетчатки. Клейковина, отмытая из кусочка теста, называется сырой. В ней содержится до 70 % воды, при пересчете на сухое вещество 82-88 % клейковины составляют белки – глиадин и глютенин. Содержание сырой клейковины примерно в два раза превышает содержание белка.
Качество клейковины определяется ее физическими свойствами: упругости, растяжимости, эластичности, способности к набуханию. Эти ценные свойства клейковины обусловливают высокую газоудерживающую способность пшеничного теста, что обеспечивает высокий объемный выход хлеба и его хорошую пористость.
Качество клейковины определяют на приборе ИДК-1 (индекс деформации клейковины). В зависимости от показаний прибора клейковина по качеству делится на три группы: І – хорошего качества; ІІ – удовлетворительного; ІІІ – неудовлетворительного. Зерно пшеницы с клейковиной ІІІ группы не пригодно для хлебопечения.
На количество и качество клейковины оказывают влияние следующие факторы: сортовые особенности; технология возделывания пшеницы (предшественники, сроки сева, уровень азотного питания); погодные условия в период созревания зерна и уборки урожая; неблагоприятные воздействия, которые зерно испытывает при выращивании (поражение вредным клопом-черепашкой), хранении (прорастание и самосогревание) и обработке (перегрев при сушке).
По хлебопекарным свойствам мягкую пшеницу подразделяют на три группы: сильная, средняя и слабая.
Сильная пшеница – это зерно одного сорта или смеси сортов, характеризующееся генетически обусловленными высокими хлебопекарными качествами и потенциальной способностью быть улучшителем слабой в хлебопекарном отношении пшеницы. В нашей зоне возделываются непревзойденные по качеству сорта сильной озимой пшеницы – Обрий, Безостая 1, Панна, Куяльник. Зерно сильной пшеницы отличается высокой натурой, высоким содержанием белка и клейковины, соответственно не менее 14 и 28 %. Клейковина должна быть только хорошего качества – не ниже І группы.
Из муки сильной пшеницы получают формоустойчивый хлеб большого объема, с хорошим пористым эластичным мякишем и куполообразной поверхностью. Добавка такой пшеницы к зерну с низкими хлебопекарными свойствами обеспечивает получение хорошей хлебопекарной муки. Чем выше смесительная ценность сильной пшеницы, тем меньше ее добавляют к слабой для улучшения качества. В мировом производстве мягкой пшеницы доля сильной составляет всего 15-20 %, поэтому ее рациональное использование является важнейшей задачей. При продаже закупочные цены на сильную пшеницу должны быть значительно выше, чем на рядовую пшеницу.
Средняя пшеница дает муку и хлеб нормального и хорошего качества, составляет основу помольных смесей (филлер) или используется для хлебопечения в чистом виде. В зерне такой пшеницы содержится достаточное количество клейковины (около 23 %) с качеством не ниже ІІ группы и белка (10-12 %). Однако средняя пшеница уступает сильной по содержанию клейковины и не обладает большой смесительной ценностью. Наибольшим спросом пользуется пшеница 3-го класса, называемая при заготовках ценной. На долю средней пшеницы приходится 25-30 % от общего валового сбора ее зерна.
Слабая пшеница имеет генетически слабую клейковину (часто ІІІ группы), ее количество не превышает 18 %, а белка – не более 8-9 %. Хлеб из такой пшеницы получается с малым объемным выходом, с неравномерной пористостью, с грубым заминающимся мякишем и посредственными вкусовыми качествами. Для использования слабой пшеницы в хлебопечении ее необходимо улучшить, добавив зерно с высокими хлебопекарными свойствами. В чистом виде слабая пшеница должна использоваться только на кормовые и технические цели. К сожалению, на долю слабой пшеницы в мире приходится не менее половины валовых сборов зерна мягкой пшеницы. Поэтому перед технологами остро стоит задача повышения качества зерна пшеницы с целью улучшения снабжения населения хорошим хлебом.
1.5. Характеристика технологических свойств твердой пшеницы
Твердая пшеница очень сильно отличается от мягкой по своим технологическим свойствам. В зерне твердой пшеницы на достаточно высоком агрофоне синтезируется больше белка и клейковины, чем в зерне мягкой пшеницы. Например, в твердой пшенице 1-го класса должно содержаться не менее 15 % белка, тогда как в мягкой – 14 % (требования стандарта).
Зерно твердой пшеницы имеет, как правило, стекловидную консистенцию эндосперма, обусловленную тесной связью белковых веществ с крахмальными зернами. Стекловидное зерно имеет плотную структуру, отличается высокой механической прочностью, на срезе оно гладкое, блестящее и просвечивается на специальном приборе – диафаноскопе. Если же зерно по консистенции мучнистое, то оно имеет рыхлую структуру, на срезе белое, мучнистое и не просвечивается на приборе. Стекловидное зерно формируется в условиях солнечной, сухой, умеренно жаркой погоды в период созревания, а дождливая, пасмурная погода может привести к повышению доли мучнистого зерна.
Стандарт нормирует общую стекл
При специальных сортовых помолах стекловидное зерно твердой пшеницы превращается в макаронную муку высшего сорта, или крупку, и первого сорта, или полукрупку. Мучнистое зерно при помоле плохо вымалывается, давится, поэтому получить из него крупку не представляется возможным. Крупка имеет белый цвет с кремовым оттенком и крупитчатую структуру. Для хлебопечения она не пригодна, но из нее получают макаронные изделия отличного качества, которые характеризуются большой прочностью (не крошатся), желтым или кремовым цветом без серого оттенка (снаружи и на изломе), большой развариваемостью (значительным увеличением объема без потери частиц и ослизнения), хорошим сохранением формы. Макаронное тесто характеризуется повышенной упругостью и пониженной пластичностью, поэтому оно проходит пластификацию под высоким давлением (свыше 100 атм.) в специальных макаронных прессах, которые снабжены насадками-матрицами, придающими изделиям любую форму. Макароны высушивают до влажности 11-13 %.
Стекловидное зерно твердой
пшеницы при переработке дает
большой выход крупы (
Высокая технологическая ценность
твердой пшеницы обусловливает
необходимость увеличения площадей
возделывания этой культуры и реализацию
ее по более высоким ценам в
сравнении с мягкой пшеницей. Наиболее
распространенными сортами
2. Физиологические
процессы, происходящие
в
зерновой массе при хранении
Любая партия зерна и семян в практике хранения называется зерновой массой. А поскольку зерновая масса – это совокупность живых организмов (зерно и семена основной культуры, примеси различного происхождения, микроорганизмы), то она будет устойчива при хранении, если нежелательные физиологические процессы в ней не происходят или они очень сильно замедлены. Иными словами, зерно хранится успешно, если оно находится в состоянии анабиоза.
2.1. Дыхание
Основной формой жизнедеятельности всех живых компонентов зерновой массы является дыхание (газообмен). Сущность дыхания и факторы, влияющие на его интенсивность, были рассмотрены в предыдущей теме. Дыхание может происходить аэробно и анаэробно с выделением конечных продуктов дыхания и энергии. Но при хранении зерновых масс продовольственного и кормового назначения наибольшее значение имеет не вид или характер дыхания, а его интенсивность. Если дыхание замедлено (интенсивность его очень низкая), то оно не оказывает отрицательного влияния на сохранность и качество зерна и семян, происходят только незначительные потери массы (в пределах норм естественной убыли), за год не превышающие, как правило, 0,1-0,2 % при правильном хранении сухого зерна. При хранении очень сырого зерна (с влажностью более 20 %), находящегося в неохлажденном состоянии, такие же потери массы сухого вещества могут произойти за одни сутки. При интенсивном дыхании происходят не только потери в массе, но и значительные потери в качестве зерна и семян. Самым отрицательным следствием дыхания в этом случае является выделение большого количества тепла, приводящего к самосогреванию зерновой массы.
2.2. Самосогревание
Самосогреванием зерновой массы называется явление самопроизвольного повышения ее температуры вследствие протекающих в ней физиологических процессов и плохой теплопроводности. В зависимости от исходного состояния зерна и условий хранения в каком-либо участке насыпи температура поднимается до 55-65 о, в редких случаях – до 70-75оС. Образующийся очаг самосогревания не остается локализованным. Тепло передается в соседние участки насыпи, что, в свою очередь, способствует активизации в них физиологических процессов и теплообразованию. Если не принять мер к ликвидации начавшегося процесса самосогревания, то вся зерновая масса окажется в греющемся состоянии. Самосогревание широко распространено в мире и приводит к значительным потерям в массе сухого вещества зерна и снижению его пищевых, кормовых и посевных качеств. При запущенных формах самосогревания партия зерна вообще может быть непригодной к использованию.
Физиологической основой самосогревания является дыхание всех живых компонентов зерновой массы, приводящее к значительному выделению тепла. Физической основой самосогревания является плохая теплопроводность зерновой массы. Образование тепла в том или ином участке зерновой насыпи, превышающее отдачу его в окружающую среду, дает типичную картину самосогревания.
При далеко зашедшем процессе самосогревания (если не принять мер к ликвидации его очага) температура зерна повышается до 50оС и выше, происходит интенсивное потемнение зерна, оно приобретает гнилостный запах. В процессе самосогревания активно идет гидролиз органических веществ, наблюдается тепловая денатурация белков, накапливается много аммиачного азота в зерновой массе. Процесс самосогревания завершается обугливанием зерна и полной потерей сыпучести зерновой массы, которая превращается в монолит, происходит полная потеря всех технологических качеств.
Радикальным средством борьбы с самосогреванием является активное вентилирование зерновой массы охлажденным воздухом, которое позволяет быстро и эффективно ликвидировать очаги самосогревания. Если же отсутствуют установки для активного вентилирования, необходимо принимать активные меры, позволяющие снизить температуру зерна. Это перебрасывание зерна зернопогрузчиками, пропуск через зерноочистительные воздушно-решетные машины, в результате чего зерно контактирует с атмосферным воздухом и охлаждается. Ручное перелопачивание зерна малоэффективно в борьбе с самосогреванием, наоборот, оно может привести к дальнейшему всплеску интенсивности физиологических процессов.
2.3. Прорастание