Предпосылки и основные этапы развития науки

Автор работы: Пользователь скрыл имя, 22 Декабря 2014 в 00:39, контрольная работа

Описание работы

Целью данной работы является: характеристика предпосылок и основных этапов развития науки.
Задачи работы следующие:
· Изучить каковы были предпосылки развития науки в целом.
· Изучить этапы развития науки.

Содержание работы

Введение………………………..……………………………………………...3
1. Преднаука и наука в собственном ее смысле………………………….…..…4
2. Культура античного полиса и становление первых форм теоретической науки…………………………………………… …….……..………………….....8
4. Специфические особенности средневековой культуры науки …………….13
4. Новоевропейская культура и становление опытной науки..……………….15
4. Революция в естествознании конца XIX – начала XX вв. и становление неклассической науки …………………………………………………….…….18
4. Возникновение дисциплинарно организованной науки. Наука как профессиональная деятельность. Формирование технических наук. ……….21
Заключение…………………………………………………………….………..28
Список использованной литературы…………………………………..…...….29

Файлы: 1 файл

Novinka_KR.docx

— 69.95 Кб (Скачать файл)

 

 

Значительным этапом в развитии образа древнегреческой науки является атомистическая концепция Демокрита. Опираясь на логику, интуицию, Демокрит умозрительным путем пришел к идее о том, что в основаниях мира должны существовать некие неделимые частицы мироздания – атомы (от греч. atomon – неделение). Рассуждения Демокрита можно условно воспроизвести в следующем виде: все в мире изменяется, делится, но есть ли предел этому делению? Если представить, что нет, тогда рано или поздно мир исчезнет, что противоречит принципу вечного существования. Стало быть, должен существовать некий предел деления мира, некие неделимые частицы (атомы), благодаря которым мир сохраняется в многообразии его явлений и процессов. В лице Демокрита древнегреческая наука продемонстрировала такие особенности, как теоретичность, логичность и доказательность суждений, умение оперировать абстрактными, не опирающимися на эмпирические знания, моделями.

Вышеобозначенные мотивы, идеи и тенденции нашли дальнейшее продолжение в учении Платона и Аристотеля. IV в. до н.э. в Древней Греции оценивается как век Платона. Следует отметить, что во многом этому способствовал и тот факт, что еще при его жизни была открыта созданная им Академия, ставшая центром философии и науки.

Прежде всего, представляет интерес форма текста платоновского учения – диалог. По сути дела диалог есть беседа, основанная на доказательстве истины путем обнаружения противоречий во мнениях собеседников. В такой форме проводил свои беседы учитель Платона – Сократ, назвавший этот метод диалектикой. Он был заимствован Платоном из математики. Платон считал его единственно верным методом доказательства. Гениальной идеей Платона является его учение о мире эйдосов – вечных бестелесных сущностей, слепками с которого является мир вещей. В чем значение этой идеи для науки? В самом общем виде можно сказать следующее: чтобы постичь, познать мир, человеку необходимо пойти дальше вещей, данных ему в ощущениях, постигнуть истинную реальность можно, лишь размышляя над общими началами и миром идей. Реальные факты мало занимают разум, для него важнее теории. Данный подход стал возможным благодаря всему предшествующему этапу формирования приемов и методов, сложившихся в науках (математике, геометрии). Кроме того, с Платона, можно сказать, начался процесс размежевания философии и науки – философия отныне будет иметь дело с понятиями и идеями, наука – с миром, данным в ощущениях, физическим миром.

По сути дела, Платон завершил обозначенную элеатами оппозицию «знание – мнение», опрокинув ее на онтологическую проблематику, обосновав двойственность бытия: его неизменную, не становящуюся основу, представляющую предмет знания, и подвижную эмпирическую видимость, выступающую предметом чувственного восприятия и мнения.

Эта оппозиция была разрешена Аристотелем (IV в. до н.э.), учеником Платона, который, развивая теорию науки, представил знание как плод упорядоченного восприятия и опыта, в которых объединяется вся информация, поступающая от органов чувств. Он первым произвел классификацию наук, дифференцировав различные области знания и разделив все живое на виды и роды, ввел понятия пространства, времени, причинности – ключевые для науки. Оппозиционируя Платону, он указал на необходимость изучения явлений или феноменов, а не понятий.

Но, пожалуй, величайшая заслуга Аристотеля в истории науки заключается в том, что он осуществил синтез известных, уже сложившихся до него и существующих в разрозненном виде, приемов логических доказательств, представив их канон, образец исследования, на который ориентировалось все научное знание. Сам Аристотель был разносторонним ученым, философом, математиком, физиком. Его работа «Физика» легла в основу научных представлений не только Античности, но и Средних веков, которые сохранились вплоть до Нового времени.

К III в. до н.э. завоеванная Александром Македонским империя распалась на несколько государств, одним из которых было государство (царство) Птолемеев, расположившееся на территории Египта с центром в городе Александрия. Именно здесь и были основаны знаменитая Александрийская библиотека и Мусейон (музей), ставшие центрами науки и философии и перенявшими традиции платоновской Академии и Аристотелева Лицея. Здесь получили дальнейшее развитие научные знания в области математики, физики (механики), медицины, астрономии и космологии.

Основателем и наиболее ярким представителем Александрийской математической школы был Евклид, а его труд «Начала» (в других переводах «Элементы», «Принципы») является первым систематическим трудом по геометрии, охватившим все геометрические знания древних. Труд Евклида стал образцом и идеалом научной строгости. Известно, что Ньютон (XVII в.), Спиноза (XVII в.) свои труды старались излагать, заимствуя у Евклида его прием строгой научной теории. В основе «Начал» Евклида положен аксиоматический метод, то есть когда из неограниченного числа теоретических положений с логической необходимостью выводятся другие.

Архимед излагал свои мысли ясным, доступным языком. Его научные труды находили применение на практике: «архимедов винт» - устройство для подъема воды на более высокий уровень, различные системы рычагов, блоков и винтов для поднятия больших тяжестей, военные метательные машины. Научные труды Архимеда не получили достойной оценки при его жизни, и лишь спустя более чем полторы тысячи лет была обнаружена их ценность.

Завершая разговор о состоянии науки в эллинистическую эпоху, необходимо отметить натурфилософское наследие Клавдия Птолемея (90-168 гг. до н.э.), одного из крупнейших ученых античности. Математика, география, астрономия – вот неполный перечень его занятий и увлечений. Одно их главных его сочинений – «Альмагест» – работа, представляющая первую математическую теорию, описывающую движение Солнца и Луны.

Данная, геоцентрическая система мира просуществовала вплоть до XVI века, до переворота, совершенного Коперником, заменившим эту  систему на гелиоцентрическую.

Подведем итоги:

В отличие от Востока, где знания имели рецептурный характер, применялись для чисто практических нужд, не были систематизированы, не имели текстового оформления, строго рационально-логического обоснования, в античной культуре начала развиваться «наука доказывающая», недаром понятия «аксиома», «теорема», «лемма» - греческого происхождения.  

В античности сложился иной способ построения знаний – абстрагирование от наличной практики и её систематизация, что обеспечивало предсказание ее результатов. Фундамент новой системы знаний начинает строиться по иному – не «снизу вверх», а как бы «сверху» по отношению к реальной практике и впоследствии, с помощью ряда опосредований, проверяются созданные идеальные конструкции методом сопоставления их с предметными отношениями практики.

Идеальные объекты «погружаются» в особую сеть отношений, структуру, которая заимствуется из другой области знаний. Соединение исходных идеальных объектов с новой «сеткой отношений» способно породить новое знание, которое может отражать новые, неизученные стороны действительности.

  1. Специфические особенности средневековой культуры науки

Заимствуя из Античности идею, согласно которой подлинное знание – это знание всеобщее, доказательное, универсальное для всех случаев жизни, средневековые схоласты указали на то, что обладать таким знанием может лишь творец, а потому изучать, познавать следует не природу и объективные законы, а «Слово Божье», переданное человеку, которое выступает универсальным орудием постижения мира. Так сложился один из ведущих принципов средневекового мировоззрения - ревеляционизм (от лат. revelatio – откровение). Бог передает знания через пророков и апостолов в Священном писании (Библии), открывает эти знания.

Однако средневековые патристы (отцы церкви) признали возможность и право интерпретации Откровения со стороны церкви, которая рассматривалась как единственный и никогда не ошибающийся толкователь. Право церкви на интерпретацию содержания Откровения оформилось в Священной традиции, закрепленной в Священном предании отцов церкви. Что же исследуется в таком случае? Исследуются не вещи или явления, а тексты, понятия. Каждая же вещь или явление рассматривается лишь как символ, дубликат текстового ее значения. Важным инструментом познания в данном случае выступает искусство истолкования святых писаний – экзегетика (греч. exegeomai - истолкование). Это потребовало и особых, специфических путей, способов познания, таких как интуиция, мистическое озарение.

Кроме того, поскольку познавательная деятельность в Средневековье носит теологически-текстовый характер, это потребовало применения уже сложившегося в греческой культуре метода познания – дедуктивной логики Аристотеля, отражающая иерархический ряд действительных вещей. Востребованным оказался и Аристотелевский телелогизм (от греч. telos – конец, цель, завершение и logos – учение), согласно которому каждая сотворенная Богом вещь служит для исполнения каких-то заранее предуготованных целей (вода и земля служат растениям, растения – животным и человеку, человек – высшей цели – Богу и т.д.).

Таким образом, символизм, телелогизм способствовали реконструкции мифологического принципа познания «причина - значение», истоки которого следует искать в своего рода гносеологической и онтологической установке библейского «Вначале было слово, и слово было у Бога, и слово было Бог», когда понятие отождествляется с действительностью, а владение понятием отождествляется со знанием о действительности. 

Приведенные установки и мировоззренческие принципы Средневековья позволяют выявить и особенности познания этого периода. Как и в Античности, оно носило созерцательный характер, настраивало на мистический и теологический лад. О познании объективных законов не могло идти и речи, а без них невозможно естествознание. Следовательно, научное познание в период Средневековья приостановилось, и многое из достижений греков оставалось невостребованным. Можно ли в таком случае заявить, что Средневековье ничего не дало науке, опытному познанию? Нет! Во-первых, если бы этот период был полным застоем, то как возможно было бы наступление эпохи Возрождения, подготовившей, в свою очередь, науку Нового времени? Во-вторых, Средневековье не было оторвано, отгорожено непроходимой стеной от предшествующих достижений в области познания физического, вещного мира. Однако в Средневековье они носили специфический характер и проявились в таких формах, как астрология, алхимия, натуральная магия. Но самое главное, что дала астрология выделившейся из не науки астрономии. Из наук в Средние века достаточное развитие получила логика, которая, наряду с математикой, геометрией, риторикой, астрономией, музыкой, преподавалась в церковных школах и появившихся уже в XI веке университетах. Отмечено, что средневековые схоласты привнесли новый момент в понимание задач логики – быть не только искусством доказательства истины (и отличения от лжи), но и искусством открытия истины.

Известными логиками того времени были Петр Испанский (1210-1277) и  Раймонд Луллий(1235-1315).

  1. Новоевропейская культура и становление опытной науки

Предпосылки возникновения опытной науки историки находят в целом ряде факторов экономического, политического и общекультурного характера, сложившихся в Европе XIV-XV вв. К ним следует отнести разложение феодальных отношений, сопровождающееся усилением обмена товаров, переход от натурального к денежному обмену, что способствовало накоплению капитала и постепенному переходу к капиталистическим отношениям. Развитие торговли потребовало расширения сфер деятельности, освоения новых стран и континентов: географические открытия расширили горизонт видения мира средневекового европейца. Оказалось, что мир не ограничивается территорией княжеств или отдельного государства, он населен разными народами, говорящими на разных языках, имеющими свои традиции и обычаи. Возникают интерес и необходимость их изучения, а также обмен идеями (торговые отношения с арабским Востоком привели к открытию для Западной Европы натурфилософии арабов).

Рост городов и, следовательно, расширение ремесел, появление мануфактур, развитие торговли потребовали новых орудий, инструментов, создать которые могла новая техника, опирающаяся на опыт и науку.

У истоков становления опытной (экспериментальной) науки стоят фигуры Н. Коперника(1473-1543) и Галилео Галилея (1564-1642).

Н.Коперник, опираясь на астрономические наблюдения и расчеты, сделал открытие, позволяющее говорить о первой научной революции в естествознании – это гелиоцентрическая система. Суть его учения кратко сводится к утверждению о том, что Солнце, а не Земля (как это считал Птолемей) находится в центре мироздания и что Земля за сутки обращается вокруг своей оси, а за год – вокруг Солнца. Тем не менее, Коперниковское учение содержало много противоречий и порождало массу вопросов, на которые и сам он ответить не мог. К примеру, на вопрос о том, почему Земля, вращаясь, не сбрасывает все со своей поверхности.

Прошло более столетия, прежде чем другой выдающийся мыслитель - Галилео Галилей - смог ответить на многие нерешенные вопросы и противоречия Коперника. Галилея считают основателем опытного изучения природы, но при этом он сумел соединить эксперимент с математическим описанием. Поставив перед собой цель – доказать, что природа живет по определенным математическим законам, он проводил эксперименты с помощью различных приборов. Одним из таковых был сделанный им из подзорной трубы телескоп, который помог ему совершить ряд открытий.

 

  Примером того, что Галилей часто прибегал к опытам, служит следующий факт: пытаясь доказать вывод о том, что тела падают вниз с одинаковой скоростью, он бросал шары разного веса с Пизанской башни и, измеряя время их падения, опроверг Аристотеля в его утверждении о том, что скорость тела увеличивается при движении к Земле пропорционально его весу. Галилей впервые в истории науки провозглашает, что при изучении природы возможно отвлечение от непосредственного опыта, поскольку природа, как он считал, «написана» на математическом языке, и разгадать ее можно только тогда, когда, отвлекаясь от чувственных данных, но на их основе создаются мысленные конструкции, теоретические схемы. Опыт – это очищенный в мысленных допущениях и идеализациях материал, а не просто описание фактов. Роль и значение Галилея в истории науки трудно переоценить. Он заложил (по мнению большинства ученых) фундамент науки о природе. С его именем связывают вторую научную революцию в естествознании и рождение подлинной науки.

Информация о работе Предпосылки и основные этапы развития науки