Материаловедение в ортопедической стоматлогии

Автор работы: Пользователь скрыл имя, 14 Ноября 2014 в 16:02, реферат

Описание работы

Вспомогательные материалы — это большая группа различных по физико-химическим свойствам веществ и препаратов, применяемых при изготовлении зубных протезов, но не составляющих саму конструкцию или ее части.

Вспомогательные материалы применяются на клинических и лабораторных этапах изготовления зубных протезов. Одни материалы применяются преимущественно в клинике, другие — только в лаборатории, значительная часть — в клинике и в лаборатории.

Файлы: 1 файл

Материаловедение в стоматологии.docx

— 43.76 Кб (Скачать файл)

Негосударственное образовательное учреждение

высшего профессионального образования

Медицинский Институт «Реавиз»

Факультет стоматологии

 

 

 

 

 

 

 

Работа по материаловедении в стоматологии

«материаловедение в ортопедической стоматлогии»

 

 

 

 

 

 

 

 

Выполнил:

Студент 2 курса, очно-заочного отделения

Кджоян Альберт Давидович

 

 

Санкт-Петербург

2014 
ВСПОМОГАТЕЛЬНЫЕ МАТЕРИАЛЫ, (СОСТАВ, СВОЙСТВА, ПРИМЕНЕНИЕ)

 

Вспомогательные материалы — это большая группа различных по физико-химическим свойствам веществ и препаратов, применяемых при изготовлении зубных протезов, но не составляющих саму конструкцию или ее части.

 

Вспомогательные материалы применяются на клинических и лабораторных этапах изготовления зубных протезов. Одни материалы применяются преимущественно в клинике, другие — только в лаборатории, значительная часть — в клинике и в лаборатории.

 

Вспомогательные материалы принято классифицировать по их назначению:

 

1)слепочные, применяются  для получения негативных отображений  с поверхности, а также перевода  негативных отображений в позитивные (получение моделей);

 

2)моделировочные, применяемые для создания, моделирования форм и размеров конструкции, копий с оригинала;

 

3)формовочные, используемые  для получения форм при изготовлении  протеза, аппарата или части его  из металлов методом литья;

 

4)абразивные, употребляемые  для обработки, шлифования и полировки  твердых поверхностей протезов, аппаратов и шин;

 

5) прочие материалы. В  эту группу объединены материалы, порой резко различающиеся не  только по физико-механическим  свойствам, но и по сфере практического  использования. Их применение не  столь широко, как иепомогательных материалов других групп, однако они необходимы. В одних случаях без них невозможно провести технологический этап, в других они значительно упрощают его проведение, облегчают труд зубного техника, способствуют повышению качества изготавливаемой продукции.

 

ОТТИСКНЫЕ  МАТЕРИАЛЫ

В ортопедической стоматологии конструирование большинства протезов, аппаратов и шин производится вне полости рта на моделях, точно воспроизводящих анатомическую форму, детали рельефа твердых и мягких тканей протезного ложа.

являющимся точной негативной копией тканей протезного ложа. Материалы, применяемые для получения оттисков, называются оттискными. Для получения слепков могут быть использованы материалы, обладающие рядом необходимых свойств:

 

1)пластичностью, позволяющей  без большого давления получать  точные отпечатки рельефа слизистой оболочки полости рта и зубных рядов;

 

2)простотой изготовления  оттискной массы, легкостью введения  в полость рта и выведения  из нее целиком или частями, легко соединяемыми в единое  целое, с сохранением отображаемого  рельефа;

 

3)способностью в течение 2—5 мин приобретать твердое или  эластичное состояние;

 

4)безвредностью для  организма, отсутствием раздражающего  действия на слизистую оболочку  полости рта, резкого запаха;

 

5)способностью сохранять  постоянство формы и объема  после выведения из полости  рта в течение времени, достаточного  для получения модели;

 

6)устойчивостью к  действию слюны;

 

7)непрочностью связей  с материалом модели, что позволяет  без труда их разъединить.

 

Оттискные материалы применяются по определенным показаниям, которые зависят от состояния здоровья пациента, характера патологического состояния зубных рядов и мягких тканей полости рта, конструкции изготавливаемого аппарата или протеза.

 

Оттискные материалы, выпускаемые промышленностью, имеют различную химическую природу и физические свойства. Врач в каждом конкретном случае выбирает такой оттискный материал, применение которого причинит пациенту минимум неудобств и позволит получить качественный отпечаток тканей протезного ложа. Зубному технику необходимо хорошо знать свойства слепочных материалов, с которыми ему приходится работать в лаборатории. От качества оттиска, сохранности его, способа получения модели в значительной степени зависит качество будущего протеза. Оттискные материалы можно классифицировать по химической природе составляющих компонентов, физическому состоянию после отвердения, условиям применения, возможности повторного использования и т. д. Наибольшее распространение получила классификация по физическому состоянию материала после отвердения (см. схему).

 

Твердокристаллические материалы

 

К этой группе оттискных материалов относятся гипс, цинкоксиэвгеноловые и цинкоксигваяколовые пасты. Характерной особенностью этих масс является то, что в отвердевшем состоянии они имеют четкое кристаллическое строение, лишены пластичности и упругих свойств.

 

Гипс

Из слепочных(оттискных) материалов наиболее широкое применение, в ортопедической стоматологии, получил гипс. С помощью гипса можно получать слепки с зубных рядов и беззубых челюстей, готовить маски лица. Из гипса изготавливают модели. Он входит в состав формовочных масс, используется как вспомогательный материал при изготовлении металлических коронок, паянии и т. п.

 

В природе гипс встречается в виде водного сульфата кальция CaS04-2H20. Гипс имеет кристаллическую структуру. Образование его связано с процессом химического воздействия между растворенными в воде водоемов солями сульфатов, в результате, которого в осадок выпадают нерастворимые соли серной кислоты. Залежи природного гипса обычно содержат различные примеси, придающие ему цветовые оттенки. Природный гипс имеет плотность 2,2—2,5 г/см3, твердость по Бринеллю 1,5— 2 кгс/мм2, растворимость в воде 2,05 г/л при 20°С.

 

В ортопедической стоматологии применяется гипс, прошедший специальную термическую обработку, в ходе которой он из двухводного превращается в полуводный CaS04-2H20. Для этого куски природного гипса подвергают механическому измельчению в специальных дробилках, откуда он направляется в мельницу для получения гипсового порошка. Размол гипса в мельнице происходит при нагревании, что способствует большему измельчению. Получение зуботехнического гипса 

возможно двумя способами: в автоклаве при повышенном давлении и в условиях нормального атмосферного давления.

 

При автоклавировании измельченный гипс помещают в автоклав и подвергают нагреву до 124°С при давлении 1,3 атм в течение 6 ч. Большая часть гипса частично обезвоживается, и он становится полуводным. При последующем высушивании при температуре 120°С в течение 2—27г ч гипс приобретает все необходимые качества, причем становится более прочным. При открытом способе получения полуводного гипса измельченный гипс помещают в варочный котел, где температуру постепенно доводят до 165°С. Гипс выдерживают в этих условиях 10—12 ч, после чего он становится полуводным. Далее гипс сортируют на ситах, вводят в него добавки, а также вещества, регулирующие скорость схватывания.

 

Качество гипса зависит от степени его измельчения (лучшими свойствами обладают мелкодисперсные порошки), а также от способа обжига его или удаления 3/4 содержащейся в нем воды.

 

При термической обработке природного гипса могут образовываться его модификации, различающиеся по физическим и технологическим показателям. Если термическую обработку гипса проводить при нормальном атмосферном давлении, то получается его J-модификация. Термическая обработка гипса при повышенном давлении (1,3 атм) приводит к образованию а-модификации. а-Полугидрат отличается большей плотностью 2,72— 2,73 г/см3 и прочностью. Его водопоглощаемость при замешивании 40—45%. р-Полугидрат менее плотный 2,67— 2,68 г/см , водопоглощаемость его 60—65%

 

Выдерживание температурного режима имеет существенное значение для свойства гипса. Так, обработка при температурах ниже оптимальной и недостаточное выдерживание по времени могут привести к тому, что в гипсе останется избыточное количество двухводного гипса, что существенно ухудшит его схватываемость. Если допустить перегрев, то молекулы гипса могут потерять всю воду и стать ангидридом CaS04.

 

При перегреве гипса до 600°С получается ангидрид, не способный присоединить воду. Разновидности гипсового ангидрида, образующиеся при более низких температурах обжига, сохраняют способность к схватыванию, однако оно происходит очень быстро и такой гипс не является технологичным.

Свойства зуботехнического гипса. Зуботехнический гипс представляет собой белый порошок плотностью 2,67—2,68 г/см3. Содержание полугидрата в пределах 90%. Масса содержит примеси, состоящие из двухводного гипса и ангидрида. Полуводный гипсовый порошок при соединении с водой вступает с ней в химическую реакцию, в результате которой молекулы гипса вновь становятся двухводными, а вся масса переходит в твердое состояние.

 

(CaS04)2 • Н20 + ЗН20 -* 2 [CaSO* • 2Н20]. Полугидрат Двугидрат.

 

Реакция гидратации гипса носит экзотермический характер. Согласно коллоидной теории (А. Й. Байков), процесс схватывания гипса объясняется тем, что полуводный гипс, обладающий растворимостью в воде в 5 раз большей, чем двухводный, по достижении предельной насыщенности раствора выпадает в осадок в виде геля, который кристаллизуется и переходит в твердое состояние.

 

Аналогичный процесс происходит при гидратации растворимых фракций ангидрида. Кристаллизация гипса начинается сразу после замешивания с водой и продолжается некоторое время после схватывания и приобретения твердого состояния.

 

Прочность гипса увеличивается по мере испарения избыточной влаги приблизительно в течение недели в зависимости от влажности окружающей среды. Так, через сутки прочность на растяжение составляет от 3 до 7 кгс/см2, а через 7 сут возрастает до 8,7—14,2 кгс/см2 (П. П. Будников). Затвердевание гипса сопровождается его расширением до 1% объема. Для получения слепков гипсовый порошок тщательно смешивают с водой (соотношение по массе 1,8— 1,5:1) до получения гомогенной массы. При гидратации молекул гипса расходуется до 65% воды, а остальная вода испаряется при высыхании отвердевшей массы.

 

В производственных условиях (в ортопедической клинике или зуботехнической лаборатории) часто возникает необходимость ускорить или замедлить скорость затвердевания гипса, получить форму большей или меньшей прочности. Это оказывается возможным при направленном воздействии на процесс гидратации и кристаллизации гипса. Ход этого процесса может регулироваться изменением степени дисперсности гипсового порошка, температурного режима, процедуры получения смеси, введением специальных добавок.

 

Дисперсность порошка.

Степень дробления гипсового порошка оказывает заметное влияние на скорость кристаллизации гипсового теста. Порошок высокой дисперсности быстрее растворяется в воде и насыщает ее, что приводит к более быстрой и равномерной кристаллизации всей массы. Получаемая при этом кристаллическая структура характеризуется большей однородностью и плотностью.

 

При просеивании гипсового порошка через сита с 4900 отверстий на 1 см2 получают высокодисперсный гипс, через сито с 1600 отверстий — умеренно или сред-недисперсный.

 

Влияние температуры. Ускорение схватывания гипса происходит при повышении температуры смеси до 30—37СС. Дальнейшее увеличение температуры нецелесообразно, так как в интервале 37—50°С скорость кристаллизации не меняется, а при температуре свыше 50°С она начинает падать.

 

Замешивание смеси. Смесь гипса с водой должна быть однородной, что достигается хорошим перемешиванием массы. При недостаточном перемешивании частицы гипса могут оказаться неравномерно смоченными, что приводит к неоднородности массы и беспорядочности процесса его кристаллизации. В тщательно размешанной массе кристаллизация происходит равномерно и более быстро, а после затвердевания масса становится более плотной.

Добавки, влияющие на скорость затвердевания. Скорость схватывания гипса может быть изменена введением в состав смеси веществ, ускоряющих или замедляющих процесс кристаллизации. Кристаллизацию ускоряют хлорид натрия NaCI, хлорид калия КС1, сульфат калия K2S04, сульфат натрия Na2S04, нитрат калия KN03 и ряд других солей. Из катализаторов наиболее широко применяется поваренная соль NaCI, которую лучше добавлять в воду в количестве 2,5—3% от ее массы и до полного растворения. Наиболее распространенными замедлителями (ингибиторами) кристаллизации являются тетраборат натрия (бура) Na2B4Oyl0H2O, столярный клей, сахар Ci2H220n, этиловый спирт СеН5ОН. Катализаторы и ингибиторы могут быть введены в воду или в порошок. Действие их проявляется при смешении компонентов гипсовой смеси с водой и растворении в ней.

 

При использовании гипса в качестве слепочного материала целесообразно уменьшить его прочность, чтобы облегчить процедуру освобождения гипсовой модели от слепка. Прочность гипса уменьшается при добавлении к массе поваренной соли или сульфата калия KS04.

 

Гели гипс употребляется для получения моделей, то прочность его желательно увеличить. Этого можно достигнуть добавлением к гипсовой смеси 2—3% тетрабората натрия.

 

Можно упрочить только поверхностный слой модели. Для этого после тщательного высушивания ее кипятят в растворе бората натрия, парафине. 11рочные модели, способные выдерживать кипячение при температуре до 120°С, можно получить из обычного зуботехнического гипса, если добавить к нему 4% смешанного тартрата калия и натрия KNaC4H406-4H20 и 0,2—0,4% тетрабората натрия Na2B407- 10Н2О. Такую смесь можно замешивать более густо, что также способствует получению более прочной модели с минимальным кристаллизационным расширением.

 

Гипс необходим почти на всех технологических этапах изготовления зубных протезов. В течение длительного периода он был практически единственным универсальным слепочным материалом. В настоящее время появилось много новых высококачественных слепочных материалов, однако все они имеют ограниченные области применения.

 

Гипс широко используется при зуботехнических работах. Из него получают модели, моделируют штампы для изготовления коронок, пресс-формы для работы с пластмассой, с помощью гипса фиксируют модели в окклюдаторах и артикуляторах, детали зубных протезов перед пайкой. Из гипса делают маски лица, муляжи. Он входит в состав ряда формовочных смесей. Во всех перечисленных случаях гипс не имеет заменителей.

 

Прочность гипса, особенно для пайки и литья частей протезов, заметно увеличивается при прибавлении к порошку 5—-10% маршалита (прокаленный и мелко измельченный речной песок).  

Гипс применяется в хирургии при лечении переломов костей, наложении бандажей и корсетов. Из него за короткое время изготавливают иммобилизирующие повязки, шины.

Информация о работе Материаловедение в ортопедической стоматлогии