Шпаргалка по "Нейрофизиологии"

Автор работы: Пользователь скрыл имя, 18 Сентября 2014 в 07:44, шпаргалка

Описание работы

Природа мембранного потенциала покоя.
Роль натрий-калиевого канала.
Ионная проницаемость мембраны нервного волокна в покое и при возбуждении

Файлы: 1 файл

нейрофиз ответы.docx

— 1.31 Мб (Скачать файл)

Полость конечного мозга образуют боковые желудочки, промежуточного мозга — третий желудочек, среднего мозга — водопровод среднего мозга (сильвиев водопровод), ромбовидного мозга — четвертый желудочек и спинного мозга — центральный канал.

В дальнейшем идет быстрое развитие конечного мозга, который начинает делиться продольной щелью большого мозга на два полушария. Затем на поверхности каждого из них появляются борозды, определяющие будущие доли и извилины.

На 4-м месяце развития плода человека появляется поперечная щель большого мозга, на 6-м — центральная борозда и другие главные борозды, в последующие месяцы — второстепенные и после рождения — самые мелкие борозды.

В процессе развития нервной системы важную роль играет миелинизация нервных волокон. Следы миелина обнаруживаются в нервных волокнах задних и передних корешков уже на 4-м месяце внутриутробной жизни плода. К концу 4-го месяца миелин выявляется в нервных волокнах, составляющих восходящие, или афферентные (чувствительные), системы боковых канатиков, тогда как в волокнах нисходящих, или эфферентных (двигательных), систем миелин обнаруживается на 6-м месяце. Приблизительно в это же время наступает миелинизация нервных волокон задних канатиков. Миелинизация нервных волокон корково-спинномозго-вых (пирамидных) путей начинается на последнем месяце внутриутробной жизни и продолжается в течение года после рождения. Это свидетельствует о том, что процесс миелинизации нервных волокон распространяется вначале на филогенетически более древние, а затем — на более молодые структуры. От последовательности миелинизации определенных нервных структур зависит очередность формирования их функций. Этим объясняется позднее созревание пирамидной системы и постепенное начало проявления ее функции в первые два года жизни ребенка. В это время бурно развиваются нервные элементы коры большого мозга, где происходит не только миелинизация нервных волокон, но и функциональная дифференциация клеточных элементов и их постепенное созревание, которое длится в течение первого десятилетия.

В постнатальном периоде постепенно происходит окончательное созревание всей нервной системы, в частности ее самого сложного отдела — коры большого мозга, играющей особую роль в мозговых механизмах условно-рефлекторной деятельности, формирующейся с первых дней жизни.

Таким образом, нервная система проходит длительный путь развития, являясь самой сложной системой, созданной эволюцией. Эволюционные законы развития нервной системы были сформулированы М. И. Аствацатуровым — Основателем биогенетического направления в неврологии.

Сущность этих законов сводится к следующему:

1. Нервная система  возникает и развивается в  процессе взаимодействия организма  с внешней средой. Нервная система  лишена стабильности, изменяясь  и непрерывно совершенствуясь  в фило-и онтогенезе.

2. Сложный и подвижный  процесс взаимодействия организма  с внешней средой вырабатывает, совершенствует и закрепляет  новые виды реакций, лежащих в  основе формирования новых функций. Ведущим в этом развитии является  функциональное звено.

3. Развитие, закрепление  более совершенных и адекватных  реакций и функций представляют  собой результат действия на  ор-ганизм внешней среды, т. е. приспособления  его к данным усло

виям существования. Борьба за существование как биологический процесс имеет место, но не является ведущим фактором в совершенствовании организма и его функций. Основное в развитии и совершенствовании функций нервной системы — приспособление (адаптация) организма к среде.

4. Функциональной  эволюции (физиологической, биофизической, биохимической) соответствует эволюция  морфологическая. Вновь приобретенные  функции постепенно закрепляются. Наряду с совершенствованием  функции происходит развитие  и совершенствование ее морфологического  субстрата.

5. Древние функции  не отмирают с появлением новых, а вырабатывается их определенная  субординация, соподчиненность.

6. В процессе  эволюции древние аппараты нервной  системы не отмирают, а только  видоизменяются, приспосабливаются  к новым внешним условиям.

7. Как уже отмечалось, онтогенез нервной системы повторяет  ее филогенез.

8. При выпадении  новых функций нервной системы  проявляются ее древние функции. Многие клинические признаки  заболеваний, наблюдаемые при нарушении  функций эволюционно более молодых  отделов нервной системы, являются  проявлением функций более древних  структур, т. е. в патологических  условиях наступает определенный  регресс нервной системы на  низшую ступень филогенетического  развития. Примером может служить  повышение сухожильных и периостальных  рефлексов или появление патологических  рефлексов при снятии регулирующего  влияния коры большого мозга.

9. Самыми ранимыми  отделами нервной системы являются  филогенетически более молодые, в частности кора большого  мозга, которая еще не выработала  защитных механизмов, в то время  как древние отделы на протяжении  тысячелетий взаимодействия с  внешней средой успели выработать  и накопить определенные механизмы  противодействия вредным факторам.

10. Чем филогенетически  более молодыми являются нервные  структуры, тем в меньшей степени  они обладают способностью восстановления (регенерации).

47.Роль коры  больших полушарий в интегративной  деятельности мозга.

Новая кора (неокортекс) представляет собой слой серого вещества общей площадью 1500— 2200 см2, покрывающий большие полушария конечного мозга. Она составляет около 72 % всей площади коры и около 40 % массы головного мозга. В коре имеется около 14 млрд. нейронов, количество глиальных клеток примерно в 10 раз больше. Кора головного мозга является в филогенетическом плане наиболее молодой нервной структурой, у человека она осуществляет высшую регуляцию функций организма и психофизиологические процессы, обеспечивающие различные формы поведения.

Сенсорные области коры — зоны, в которые проецируются сенсорные раздражители (синонимы: проекционная кора, корковые отделы анализаторов). Они расположены преимущественно в теменной, височной и затылочной долях. Обработанная сенсорная информация используется для формирования «схемы тела» и регуляции функций мозжечка (височно-мостомозжечковый путь). Основная часть информации об окружающей среде и внутренней среде организма, поступившая в сенсорную кору, передается для дальнейшей ее обработки в ассоциативную кору.

Ассоциативная кора представляет собой мощный аппарат конвергенции различных сенсорных возбуждений, позволяющий произвести сложную обработку информации о внешней и внутренней среде организма и использовать ее для осуществления высших психофизиологических функций. Основной закономерностью топографического представительства является то, что регуляция деятельности мышц, обеспечивающих наиболее точные и разнообразные движения (речь, письмо, мимика), требует участия больших по площади участков двигательной коры. Двигательные реакции на раздражение первичной моторной коры осуществляются с минимальным порогом (высокая возбудимость), они представлены элементарными сокращениями мышц противоположной стороны тела (для мышц головы сокращение может быть билатеральное). При поражении этой корковой зоны утрачивается способность к тонким координированным движениям рук, особенно пальцев.

В двигательной коре выделяют первичную и вторичную моторные области.

Первично двигательная кора. Основной закономерностью топографического представительства является то, что регуляция деятельности мышц, обеспечивающих наиболее точные и разнообразные движения (речь, письмо, мимика), требует участия больших по площади участков двигательной коры. Двигательные реакции на раздражение первичной моторной коры осуществляются с минимальным порогом (высокая возбудимость), они представлены элементарными сокращениями мышц противоположной стороны тела (для мышц головы сокращение может быть билатеральное). При поражении этой корковой зоны утрачивается способность к тонким координированным движениям рук, особенно пальцев.

Вторичная двигательная кора. Она осуществляет высшие двигательные функции, связанные с планированием и координацией произвольных движений. Через пирамидные пути осуществляет свои функции и премоторная кора: двигательные навыки письма, поворот головы, глаз и туловища в противоположную сторону, а также речь (речедвигательный центр Брока, поле 44). В регуляции письма и особенно устной речи имеется выраженная асимметрия больших полушарий мозга: у 95 % правшей и 70 % левшей устная речь контролируется левым полушарием.

Через пирамидные пути осуществляет свои функции и премоторная кора: двигательные навыки письма, поворот головы, глаз и туловища в противоположную сторону, а также речь (речедвигательный центр Брока, поле 44). В регуляции письма и особенно устной речи имеется выраженная асимметрия больших полушарий мозга: у 95 % правшей и 70 % левшей устная речь контролируется левым полушарием.

48. Роль спинного мозга в регуляции  поведения.

Объем функций, осуществляемых спинным мозгом, чрезвычайно велик. В нем находятся центры: всех двигательных рефлексов (за исключением мышц головы); всех рефлексов мочеполовой системы и прямой кишки; рефлексов, обеспечивающих терморегуляцию; регулирующих метаболизм тканей; большинства сосудистых рефлексов; сокращения диафрагмы и др. В естественных условиях эти рефлексы всегда испытывают влияние высших отделов головного мозга.

Степень проявления рефлексов зависит от того, сохраняются ли связи структур спинного мозга со структурами головного мозга. После децеребрации (удаления головного мозга) или спинализации (отделения спинного мозга от головного посредством перерезки) исчезают многие сложные формы активности, создаваемые спинным мозгом. При этом определенное значение принадлежит уровню организации подопытного животного. Например, спинальная лягушка, представитель низших позвоночных, может сидеть и вырываться, когда ее схватывают. Спинальная же собака сама не может ни стоять, ни ходить. Это объясняется тем, что разобщение спинного мозга и вышележащих структур нарушает рефлекторные дуги, ответственные за осуществление определенных реакций. При этом, в частности, исчезают периодические разряды дыхательных мышц, обеспечивающие дыхательные движения, пропадают тонические разряды симпатических нейронов, поддерживающих сосудистый тонус и, соответственно, артериальное давление.

Как правило, рефлексы спинальных животных являются координированными. Возбуждение у них каждой группы рецепторов сопровождается своим специфическим ответом. Например, механическое раздражение кожи стопы у лягушки вызывает сгибание раздражаемой конечности и разгибание другой. Раздражение рецепторов мочевого пузыря и прямой кишки сопровождается рефлекторным сокращением их мускулатуры.

В связи с отсутствием тонических влияний структур головного мозга изменяется функциональное состояние и самих спинномозговых нейронных систем. К числу таких нарушений относится прекращение сложных локомоторных актов типа шагания. Характерно, что исчезновение этих актов после спинализации удается восстановить введением животному веществ, способствующих выделению медиаторов синаптическими окончаниями перерезанных путей.

К числу рефлексов спинного мозга относятся защитные рефлексы, рефлексы на растяжение, мышц—антагонистов, висцеромоторные, вегетативные рефлексы. Эта классификация весьма условна, и весь ее смысл в том, что она указывает на многообразие рефлекторных ответов. Даже у спинального животного трудно встретить рефлексы, которые относились бы только к одной из названных групп.

Раздражение в виде укола кожи стопы вызывает у лягушки защитный рефлекс — либо отдергивание лапки при легком уколе, либо вовлечение в реакцию другой лапки и отодвигание от источника при более сильном воздействии, наконец, убегание животного при значительном болевом раздражении, когда в возбуждение вовлекаются многие структуры нервной системы.

Рефлексы растяжения проявляются укорочением мышцы в ответ на ее растяжение. Основными рецепторами в этом случае служат нервно—мышечные веретена, афферентным звеном — чувствительные волокна соматических нервов и дорсальных корешков спинного мозга. Эти рефлекторные дуги чаще всего замыкаются в спинном мозге. Начало и конец рефлекторной дуги связаны с мышцей. Рефлексы наиболее выражены в мышцах—разгибателях. Для того чтобы организм мог противостоять силе земного притяжения, эти мышцы должны находиться в состоянии тонического напряжения. Биологическое значение этих рефлексов состоит в том, что они участвуют в сохранении статики и положения тела, регулируя степень сокращения мышцы в соответствии с действующими на нее раздражениями. Особое значение этот вид рефлексов имеет у копытных животных, хотя и у человека они хорошо развиты.

Рефлексы мышц—антагонисто лежат в основе локомоторных актов и характеризуются тем, что при возбуждении мотонейронов сгибателей одновременно происходит торможение мотонейронов мыщц—разгибателей. При этом в конечности другой стороны наблюдаются обратные явления. В целом это создает правильное чередование противоположных по функциональному значению мышечных сокращений. Механизм, обусловливающий такое чередование активности различных двигательных ядер, например при ходьбе, локализуется в интернейронном аппарате спинного мозга. Вместе с тем для его активации необходимо поступление тонического нисходящего сигнала из двигательных центров головного мозга.

Висцеромоторные рефлексы возникают при возбуждении афферентных волокон внутренних органов и характеризуются появлением двигательных реакций мышц грудной и брюшной стенки, мышц—разгибателей спины. Возникновение этих рефлексов связано с существованием конвергенции висцеральных и соматических афферентных волокон к одним и тем же интернейронам спинного мозга.

Информация о работе Шпаргалка по "Нейрофизиологии"