Шпаргалка по "Нейрофизиологии"

Автор работы: Пользователь скрыл имя, 18 Сентября 2014 в 07:44, шпаргалка

Описание работы

Природа мембранного потенциала покоя.
Роль натрий-калиевого канала.
Ионная проницаемость мембраны нервного волокна в покое и при возбуждении

Файлы: 1 файл

нейрофиз ответы.docx

— 1.31 Мб (Скачать файл)

Вегетативные рефлексы заключаются, во—первых, в появлении полисинаптических разрядов в преганглионарных симпатических волокнах в ответ на возбуждение

симпатических и соматических чувствительных клеток во—вторых, в возникновении рефлекторных реакций парасимпатических нейронов в ответ на раздражение чувствительных путей.

Наряду с выполнением собственных рефлекторных реакций нейронные структуры спинного мозга служат аппаратом для реализации большого числа сложных процессов, осуществляемых различными отделами головного мозга. Это управление может быть прямым, когда нисходящие пути непосредственно связаны с мотонейронами спинного мозга, и непрямым через интернейроны образующие короткие межсегментарные связи. Свойства последних и особенности связей с нисходящими волокнами и моторными нейронами создают возможность к интеграции поступающих сигналов, их переработке и пространственному перераспределению.

 

49. Механизмы ресципрокности в  спинном мозге.

Принцип реципрокности (сопряженности) в работе нервных центров. Это явление было изучено И. М. Сеченовым, Н. Е. Введенским, Шеррингтоном. Суть его заключается в том, что при возбуждении одних нервных центров деятельность других может затормаживаться. Принцип реципрокности был показан по отношению к нервным центрам мышц-антагонистов — сгибателей и разгибателей конечностей.

Пример. Наиболее отчетливо он проявляется у животных с удаленным головным мозгом и сохраненным спинным (спинальное животное). Если раздражать у спинального животного (кошка) кожу конечностей, отмечается сгибательный рефлекс данной конечности, а на противоположной стороне в это время наблюдается рефлекс разгибания. Описанные явления связаны с тем, что при возбуждении центра сгибания одной конечности происходит реципрокное торможение центра разгибания этой же конечности. На симметричной стороне имеются обратные взаимоотношения: возбужден центр разгибателей и заторможен центр сгибателей. Только при такой взаимосочетанной (реципрокной) иннервации возможен акт ходьбы.

α—Мотонейроны осуществляют передачу скелетным мышечным волокнам сигналов, выработанных в спинном мозгу. Аксоны каждого мотонейрона многократно делятся, и, таким образом, каждый из них охватывает своими терминалями до сотни мышечных волокон, образуя в совокупности с ними двигательную единицу. В свою очередь, несколько мотонейронов, иннервирующих ,одну и ту же мышцу, образуют мотонейронный пул. В его состав могут входить мотонейроны нескольких соседних сегментов. В связи с тем, что возбудимость / мотонейронов пула неодинакова, при слабых раздражениях возбуждается только часть из них. Это влечет за собой соответственно сокращение лишь части мышечных волокон. Другие моторные единицы, для которых это раздражение является подпороговым, тоже реагируют, хотя их реакция выражается лишь в деполяризации мембраны и повышении возбудимости. С усилением раздражения они еще больше вовлекаются в реакцию, и, таким образом, все двигательные единицы пула участвуют в рефлекторном ответе.

Максимальная частота воспроизведения ПД в α—мотонейроне не превышает 200—300 имп/с. Вслед за ПД, амплитуда которого составляет 80—100 мВ, возникает следовая гиперполяризация длительностью от 50 до 150 мс. По частоте импульсации и выраженности следовой гиперполяризации мотонейроны разделяют на две группы: фазические и тонические. Особенности их возбуждения коррелируют с функциональными свойствами иннервируемых мышц. Фазическими мотонейронами иннервируются более быстрые, «белые» мышцы, тоническими — более медленные, «красные».

В организации функции α—мотонейронов важным звеном является наличие системы отрицательной обратной связи, образованной аксонными коллатералями и специальными тормозными вставочными нейронами — клетками Реншоу. Своими возвратными тормозными влияниями они могут охватывать большие группы мотонейронов, обеспечивая, таким образом, интеграцию процессов возбуждения и торможения.

 

 

 

 

 

50. Роль среднего мозга  в интегративной деятельности  ЦНС.

 

Средний мозг образован четверохолмием и ножками мозга.

Четверохолмие среднего мозга является важным центром регуляции слуховых и зрительных рефлексов. Передние бугры являются первичными зрительными центрами, а задние – первичными слуховыми центрами. Ядра верхних и нижних холмиков являются центрами запуска различного рода движений, возникающих под влиянием зрительных и слуховых импульсов. От ядер этих холмиков берет начало проводящий путь, заканчивающийся на клетках передних рогов спинного мозга.

К ядрам верхних холмиков приходят чувствительные импульсы от сетчатки глаза. Ответная (рефлекторная) реакция формируется в виде ориентировочного рефлекса — поворота глаз и головы к свету. В зависимости от яркости света изменяются величина зрачка и кривизна хрусталика. Аккомодация (приспособляемость) глаза способствует ясному видению предметов.

К ядрам нижних холмиков направляются чувствительные импульсы от органов слуха. Ответная реакция заключается в повороте головы, глаз в сторону звуков.

В крыше среднего мозга локализована нейронная сеть, вычисляющая скорость и направление движения объекта в поле зрения.

 

Кроме того, в среднем мозге находятся ядра, нейроны которых осуществляют синтез некоторых медиаторов из группы моноаминов:

  • Ядра средней линии (ядра шва) – относятся к центрам сна, участвуют в контроле сенсорных потоков, представляют собой часть антиноцицептивной (обезболивающей) системы, осуществляют синтез серотонина;
  • Голубое пятно – является основным норадренергическим образованием среднего мозга, передающим импульсные влияния через медиатор норадреналин. Импульсная активность нейронов голубого пятна повышена в фазе быстрого сна, что выключает мышечный тонус и фазические движения мускулатуры туловища и конечностей. В функциональном плане голубое пятно тесно связано с чувствительными ядрами тройничного, языкоглоточного и блуждающего нервов. Вместе они составляют основную мозговую структуру, обеспечивающую постоянство внутренней среды (гомеостаз) организма. Это способность связана с тем, что ГП, с одной стороны, способно реагировать на изменение газового состава крови и ликвора, а с другой стороны, имеет многочисленные эфферентные выходы на гипоталамус, ретикулярную формацию и вегетативные центры, обеспечивающие нейрогуморальную регуляцию состава внутренней среды организма. ГП играет особую роль в повышении устойчивости и эффективности адаптации организма к стрессорным нагрузкам;
  • Черная субстанция –  состоит из латеральной (ретикулярной) и медиальной (компактной) частей. Нейроны компактной части осуществляют синтез дофамина; их аксоны направляются вперед к базальным ядрам (ганглиям) больших полушарий. Ретикулярная часть участвует в управлении движениями глаз.
  • Красное ядро – важный центр регуляции моторных функций. От красного ядра начинается руброспинальный тракт спинного мозга, оно является элементом экстрапирамидной системы контроля движений

 

На уровне среднего мозга расположены ядра черепно-мозговых нервов:

  • Двигательное ядро глазодвигательного нерва (III пара) иннервирует мышцы глаза. Добавочное (парасимпатическое ядро), иннервируя сфинктер зрачка и ресничную мышцу, осуществляет рефлексы сужения зрачка и аккомодации глаза.
  • Ядро блокового нерва (IV пара)  расположено на уровне нижних бугров четверохолмия, иннервируя верхнюю косую мышцу глаза, оно осуществляет поворот глазного яблока вниз и кнаружи.
  • Среднемозговое сенсорное ядро тройничного нерва (V пара) представляет собой ядро проприоцептивной чувствительности для жевательных мышц и мышц глазного яблока. 

 

 51. Роль промежуточного мозга в интегративной деятельности ЦНС

 

Промежуточный мозг, вместе с большими полушариями участвует в организации всех сложных форм поведения и в регуляции функций организма. Интегрирует сенсорные, двигательные и вегетативные реакции, обеспечивая целостную деятельность организма.

Структура и функции составляющих промежуточный мозг частей столь различна, что их рассматривают по отдельности.  ПМ состоит из таламуса, эпиталамуса, метаталамуса и гипоталамуса.

Про таламус и гипоталамус у нас есть отдельные вопросы, поэтому я не буду писать очень подробно, иначе можно утонуть в этом вопросе…

 

Таламус (зрительный бугор) является подкорковым центром общей чувствительности. В таламус поступают все чувствительные пути от внешних и внутренних рецепторов организма (за исключением обонятельного), перерабатываются и проводятся в большие полушария.

Вентральные латеральные ядра таламуса являются двигательными центрами, проводящими к коре сигналы от мозжечка (зубчатых ядер) и базальных ганглиев. Передние ядра таламуса связаны с системой памяти и эмоций. Подушка является зрительным центром. Медиальные ядра таламуса связаны с регуляцией уровня бодрствования. Дорзальные ядра — с функцией внимания («фильтрацией» сенсорных потоков).

При поражении таламуса появляются сильные головные боли, нарушается сон и усиливается или уменьшается общая чувствительность, движения становятся несоразмерными, не очень точными.

По функциональной роли в таламусе выделяют следующие ядра:

  • специфические (релейные) – представляют собой важнейшую часть основных сенсорных и моторных систем, разрушение приводит к полной и необратимой потери чувствительности или нарушениям движений. Таламус является высшим центром болевой чувствительности. Он осуществляет анализ болевых сигналов и организует болевые ответные реакции. Импульсы, идущие к нейронам таламуса от поврежденных участков тела активируют эти нейроны и вызывают болевые ощущения. Таким образом, болевые ощущения связаны с возбуждением неспецифических ядер таламуса, для этого необязательно участие коры. В коре формируется уже субъективное отношение к болевому стимулу;
  • неспецифические – не относятся к определенной сенсорной или моторной системе, связаны со многими системами, участвуют вместе с ретикулярной формацией в осуществлении неспецифических функций. Выступают в роли интегрирующего посредника между стволом мозга и мозжечком, с одной стороны, и новой корой -, лимбической системой и базальными ганглиями – с другой, объединяя их в единый функциональный комплекс. Регулируют функциональное состояние коры, меняют ее реактивность к специфическим сигналам. Деятельность неспецифической таламической системы тесно связана с механизмами развития сна, саморегуляции функционального состояния и ВНД. Разрушение неспецифических ядер не вызывает грубых расстройств эмоций, восприятия, сна и бодрствование, а нарушает только тонкое регулирование поведения. В связи с этим, модулирующее влияние неспецифических ядер таламуса, обеспечивающее плавную настройку ВНД, считается их главной функцией;
  • ассоциативные – принимают импульсацию не от проводниковых путей анализаторов, а от других ядер таламуса. Эфферентные выходы от этих ядер направляются главным образом в ассоциативные поля коры. В свою очередь, кора мозга посылает волокна к ассоциативным ядрам, регулируя их функцию. Главной функцией этих ядер является интегративная функция, которая выражается в объединении как таламический ядер, так и различных зон ассоциативной коры полушарий мозга.

Кроме передачи проекционных влияний на кору, нейроны таламуса сами могут осуществлять замыкание рефлекторных путей без участия коры и таким образом самостоятельно осуществлять сложные рефлекторные функции.

 

Метаталамус образован парными медиальным и латеральным коленчатыми телами, лежащими позади каждого таламуса. Медиальное коленчатое тело находится позади подушки таламуса, оно является наряду с нижними холмиками пластинки крыши среднего мозга (четверохолмия) подкорковым центром слухового анализатора. Латеральное коленчатое тело расположено книзу от подушки, оно вместе с верхними холмиками пластинки крыши является подкорковым центром зрительного анализатора.

 

Гипоталамус является главным подкорковым центром регуляции вегетативных функций организма. Нейроны гипоталамуса реагируют на состав крови и спинномозговой жидкости и образуют несколько важнейших центров: центр голода и насыщения, центр жажды, центр терморегуляции, центр полового поведения, центр агрессии, ярости, центр удовольствия, центр регуляции цикла «сон-бодрствование».

Гипоталамус (посредством гипофиза) является также центром регуляции эндокринных функций, он объединяет нервные и эндокринные регуляторные механизмы в общую нейроэндокринную систему, координирует нервные и гормональные механизмы функций внутренних органов. В гипоталамусе имеются нейроны обычного типа и нейросекреторные клетки, они трансформируют нервный импульс в нейрогормональный. Гипоталамус образует с гипофизом единый функциональный комплекс — гипоталамо-гипофизарную систему, в которой гипоталамус играет регулирующую роль, а гипофиз — эффекторную. Таким образом, гипоталамус является связующим звеном между нервной системой и эндокринным аппаратом.

 

Эпиталамус – небольшой отдел промежуточного мозга, состоящий из эпифиза (шишковидной железы) и ядер нервных клеток, регулирующих его деятельность. Эпифиз – эндокринная железа, расположенная в области промежуточного мозга, участвует в регуляции суточных ритмов (сон-бодрствование), обмена веществ за счет выработки серотонина и мелатонина. Серотонин – не специфический для эпифиза продукт, но его концентрации в нем существенно выше, чем в других органах. Мелатонин образуется из серотонина, активируя ГАМК-рецепторы тормозных нейронов лимбической системы, усиливает процесс торможения и оказывает транквилизирующее влияние, а также угнетающее действие на половые железы (тормозит половое созревание в раннем онтогенезе), щитовидную и поджелудочную железы.

 

  • 52. Роль таламуса в интегративной деятельности ЦНС.

Таламус (thalamus, зрительный бугор) — структура, в которой происходит обработка и интеграция практически всех сигналов, идущих в кору большого мозга от спинного, среднего мозга, мозжечка, базальных ганглиев головного мозга.

Морфофункциональная организация. В ядрах таламуса происходит переключение информации, поступающей от экстеро-, проприорецепторов и интероцепторов и начинаются таламокортикальные пути.

Учитывая, что коленчатые тела таламуса являются подкорковыми центрами зрения и слуха, а узел уздечки и переднее зрительное ядро участвуют в анализе обонятельных сигналов, можно утверждать, что зрительный бугор в целом является подкорковой «станцией» для всех видов чувствительности. Здесь раздражения внешней и внутренней среды интегрируются, после чего поступают в кору большого мозга.

Зрительный бугор является центром организации и реализации инстинктов, влечений, эмоций. Возможность получать информацию о состоянии множества систем организма позволяет таламусу участвовать в регуляции и определении функционального состояния организма в целом (подтверждением тому служит наличие в таламусе около 120 разнофункциональных ядер). Ядра образуют своеобразные комплексы, которые можно разделить по признаку проекции в кору на 3 группы: передняя проецирует аксоны своих нейронов в поясную извилину коры большого мозга; медиальная — в лобную долю коры; латеральная — в теменную, височную, затылочную доли коры. По проекциям определяется и функция ядер. Такое деление не абсолютно, так как одна часть волокон от ядер таламуса идет в строго ограниченные корковые образования, другая — в разные области коры большого мозга.

Ядра таламуса функционально по характеру входящих и выходящих из них путей делятся на специфические, неспецифические и ассоциативные.

К специфическим ядрам относятся переднее вентральное, медиальное, вентролатеральиое, постлатеральное, постмедиальное, латеральное и медиальное коленчатые тела. Последние относятся к подкорковым центрам зрения и слуха соответственно.

Основной функциональной единицей специфических таламических ядер являются «релейные» нейроны, у которых мало дендритов и длинный аксон; их функция заключается в переключении информации, идущей в кору большого мозга от кожных, мышечных и других рецепторов.

От специфических ядер информация о характере сенсорных стимулов поступает в строго определенные участки III—IV слоев коры большого мозга (соматотопическая локализация). Нарушение функции специфических ядер приводит к выпадению конкретных видов чувствительности, так как ядра таламуса, как и кора большого мозга, имеют соматотопическую локализацию. Отдельные нейроны специфических ядер таламуса возбуждаются рецепторами только своего типа. К специфическим ядрам таламуса идут сигналы от рецепторов кожи, глаз, уха, мышечной системы. Сюда же конвергируют сигналы от интерорецепторов зон проекции блуждающего и чревного нервов, гипоталамуса.

Информация о работе Шпаргалка по "Нейрофизиологии"