Методы моделирования в исследовании систем управления

Автор работы: Пользователь скрыл имя, 02 Января 2013 в 18:47, курсовая работа

Описание работы

Цели исследования могут быть текущими и перспективными, общими и локальными, постоянными и эпизодическими.
Объектом исследования является система управления. Но в методологическом отношении очень важным оказывается понимание и учет класса этой системы. Она относится к классу социально-экономических систем. А это значит, что основополагающим ее элементом является человек, деятельность человека определяет особенности всех процессов ее функционирования и развития. Связи, благодаря которым существует эта система, характеризуют сложные и противоречивые отношения между людьми, основанные па их интересах, ценностях, мотивах и установках.

Содержание работы

Введение ……………………………………………………………………... 3
1. Основные понятия теории моделирования систем …………………….. 7
2. Классификация видов моделирования систем ………………………..… 10
3. Характеристики моделей систем ………………………………………... 15
4. Принципы системного подхода в моделировании систем …………….. 18
4.1. Подходы к исследованию систем …………………………………… 19
4.2. Цели моделирования систем управления ………..…………………. 23
4.3. Стадии разработки моделей ……………..……………………...…... 25
4.4. Проверка адекватности модели ……………………………………... 27
Заключение ………………………………………………………………….. 28
Список используемой литературы ………………………………………… 29

Файлы: 1 файл

Курсовая по ИСУ.doc

— 136.50 Кб (Скачать файл)

При системном подходе  к моделированию систем необходимо, прежде всего, четко определить цель моделирования. Поскольку невозможно полностью смоделировать реально функционирующую систему (систему - оригинал, или первую систему), создается модель (система - модель, или вторая система) под поставленную проблему. Таким образом, применительно к вопросам моделирования цель возникает из требуемых задач моделирования, что позволяет подойти к выбору критерия и оценить, какие элементы войдут в создаваемую модель. Поэтому необходимо иметь критерий отбора отдельных элементов в создаваемую модель.

4.1. Подходы к исследованию систем.

Важным для системного подхода является определение структуры  системы — совокупности связей между  элементами системы, отражающих их взаимодействие. Структура системы может изучаться  извне с точки зрения состава  отдельных подсистем и отношений между ними, а также изнутри, когда анализируются отдельные свойства, позволяющие системе достигать заданной цели, т. е. когда изучаются функции системы. В соответствии с этим наметился ряд подходов к исследованию структуры системы с ее свойствами, к которым следует отнести структурный и функциональный.

При структурном подходе  выявляются состав выделенных элементов  системы и связи между ними. Совокупность элементов и связей между ними позволяет судить о  структуре системы. Последняя в  зависимости от цели исследования может быть описана на разных уровнях рассмотрения. Наиболее общее описание структуры — это топологическое описание, позволяющее определить в самых общих понятиях составные части системы и хорошо формализуемое на базе теории графов.

Менее общим является функциональное описание, когда рассматриваются отдельные функции, т. е. алгоритмы поведения системы, и реализуется функциональный подход, оценивающий функции, которые выполняет система, причем под функцией понимается свойство, приводящее к достижению цели. Поскольку функция отображает свойство, а свойство отображает взаимодействие системы с внешней средой, то свойства могут быть выражены в виде либо некоторых характеристик элементов и подсистем системы, либо системы в целом.

При наличии некоторого эталона сравнения можно ввести количественные и качественные характеристики систем. Для количественной характеристики вводятся числа, выражающие отношения между данной характеристикой и эталоном. Качественные характеристики системы находятся, например, с помощью метода экспертных оценок.

Проявление функций  системы во времени, т. е. функционирование системы, означает переход системы  из одного состояния в другое, т. е. движение в пространстве состояний. При эксплуатации системы весьма важно качество ее функционирования, определяемое показателем эффективности и являющееся значением критерия оценки эффективности. Существуют различные подходы к выбору критериев оценки эффективности. Система может оцениваться либо совокупностью частных критериев, либо некоторым общим интегральным критерием.

Следует отметить, что  создаваемая модель с точки зрения системного подхода также является системой и может рассматриваться  по отношению к внешней среде. Наиболее просты по представлению модели, в которых сохраняется прямая аналогия явления. Применяют также модели, в которых нет прямой аналогии, а сохраняются лишь законы и общие закономерности поведения элементов системы. Правильное понимание взаимосвязей как внутри самой модели, так и взаимодействия ее с внешней средой в значительной степени определяется тем, на каком уровне находится наблюдатель.

Простой подход к изучению взаимосвязей между отдельными частями  модели предусматривает рассмотрение их как отражение связей между  отдельными подсистемами объекта. Такой классический подход может быть использован при создании достаточно простых моделей. Реальный объект, подлежащий моделированию, разбивается на отдельные подсистемы, т. е. выбираются исходные данные для моделирования и ставятся цели, отображающие отдельные стороны процесса моделирования. По отдельной совокупности исходных данных ставится цель моделирования отдельной стороны функционирования системы, на базе этой цели формируется некоторая компонента будущей модели. Совокупность компонент объединяется в модель.

Таким образом, разработка модели на базе классического подхода  означает суммирование отдельных компонент  в единую модель, причем каждая из компонент  решает свои собственные задачи и  изолирована от других частей модели. Поэтому классический подход может быть использован для реализации сравнительно простых моделей, в которых возможно разделение и взаимно независимое рассмотрение отдельных сторон функционирования реального объекта. Для модели сложного объекта такая разобщенность решаемых задач недопустима, так как приводит к значительным затратам ресурсов при реализации модели на базе конкретных программно-технических средств. Можно отметить две отличительные стороны классического подхода: наблюдается движение от частного к общему, создаваемая модель (система) образуется путем суммирования отдельных ее компонент и не учитывается возникновение нового системного эффекта.

С усложнением объектов моделирования возникла необходимость  наблюдения их с более высокого уровня. В этом случае наблюдатель (разработчик) рассматривает данную систему как некоторую подсистему какой-то метасистемы ,т. е. системы более высокого ранга, и вынужден перейти на позиции нового системного подхода, который позволит ему построить не только исследуемую систему, решающую совокупность задач, но и создавать систему, являющуюся составной частью метасистемы.

Системный подход получил  применение в системотехнике в связи  с необходимостью исследования больших  реальных систем, когда сказалась  недостаточность, а иногда ошибочность  принятия каких-либо частных решений. На возникновение системного подхода повлияли увеличивающееся количество исходных данных при разработке, необходимость учета сложных стохастических связей в системе и воздействий внешней среды. Все это заставило исследователей изучать сложный объект не изолированно, а во взаимодействии с внешней средой, а также в совокупности с другими системами некоторой метасистемы.

Системный подход позволяет  решить проблему построения сложной  системы с учетом всех факторов и  возможностей, пропорциональных их значимости, на всех этапах исследования системы и построения модели. Системный подход означает, что каждая система является интегрированным целым даже тогда, когда она состоит из отдельных разобщенных подсистем. Таким образом, в основе системного подхода лежит рассмотрение системы как интегрированного целого, причем это рассмотрение при разработке начинается с главного — формулировки цели функционирования. На основе исходных данных, которые известны из анализа внешней системы, тех ограничений, которые накладываются на систему сверху либо исходя из возможностей ее реализации, и на основе цели функционирования формулируются исходные требования к модели системы. На базе этих требований формируются ориентировочно некоторые подсистемы, элементы и осуществляется наиболее сложный этап синтеза — выбор составляющих системы, для чего используются специальные критерии выбора.

При моделировании необходимо обеспечить максимальную эффективность  модели системы, которая определяется как некоторая разность между какими-то показателями результатов, полученных в итоге эксплуатации модели, и теми затратами, которые были вложены в ее разработку и создание. [3]

 

4.2. Цели моделирования систем управления.

Одним из наиболее важных аспектов построения систем моделирования  является проблема цели. Любую модель строят в зависимости от цели, которую ставит перед ней исследователь, поэтому одна из основных проблем при моделировании — это проблема целевого назначения. Подобие процесса, протекающего в модели, реальному процессу является не целью, а условием правильного функционирования модели, и поэтому в качестве цели должна быть поставлена задача изучения какой-либо стороны функционирования объекта.

Для упрощения модели цели делят на подцели и создают  более эффективные виды моделей  в зависимости от полученных подцелей моделирования. Можно указать целый ряд примеров целей моделирования в области сложных систем. Например, для предприятием весьма существенно изучение процессов оперативного управления производством, оперативно-календарного планирования, перспективного планирования и здесь также могут быть успешно использованы методы моделирования.

Если цель моделирования  ясна, то возникает следующая проблема, а именно проблема построения модели. Построение модели оказывается возможным, если имеется информация или выдвинуты гипотезы относительно структуры, алгоритмов и параметров исследуемого объекта. На основании их изучения осуществляется идентификация объекта. В настоящее время широко применяют различные способы оценки параметров: по методу наименьших квадратов, по методу максимального правдоподобия, байесовские, марковские оценки.

Если модель построена, то следующей проблемой можно  считать проблему работы с ней, т. е. реализацию модели, основные задачи которой — минимизация времени  получения конечных peзультатов и обеспечение их достоверности.

Для правильно построенной  модели характерным является то, что  она выявляет лишь те закономерности, которые нужны исследователю, и  не рассматривает свойства системы, не существенные для данного исследования. Следует отметить, что оригинал и модель должны быть одновременно сходны по одним признакам и различны по другим, что позволяет выделить наиболее важные изучаемые свойства. В этом смысле модель выступает как некоторый «заместитель» оригинала, обеспечивающий фиксацию и изучение лишь некоторых свойств реального объекта.

В одних случаях наиболее сложной оказывается идентификация  в других — проблема построения формальной структуры объекта. Возможны трудности и при реализации модели, особенно в случай имитационного моделирования больших систем. При этом следует подчеркнуть роль исследователя в процессе моделирования. Постановка задачи, построение содержательной модели реального объекта во многом представляют собой творческий процесс и базируются на эвристике. И в этом смысле нет формальных путей выбора оптимального вида модели. Часто отсутствуют формальные методы, позволяющие достаточно точно описать реальный процесс. Поэтому выбор той или иной аналогии, выбор того или иного математического аппарата моделирования полностью основывается на имеющемся опыте исследователя и ошибка исследовав теля может привести к ошибочным результатам моделирований.

Средства вычислительной техники, которые в настоящее  время широко используются либо для  вычислений при аналитическом моделировании, либо для реализации имитационной модели системы, могут лишь помочь с точки зрения эффективности реализации сложной модели, но не позволяют подтвердить правильность тон или иной модели. Только на основе обработанных данных, опыта исследователя можно с достоверностью оценить адекватность модели по отношению к реальному процессу.

Если в ходе моделирования  существенное место занимает реальный физический эксперимент, то здесь весьма важна и надежность используемых инструментальных средств, поскольку сбои и отказы программно-технических средств могут приводить к искаженным значениям выходных данных, отображающих протекание процесса. И в этом смысле при проведении физических экспериментов необходимы специальная аппаратура, специально разработанное математическое и информационное обеспечение, которые позволяют реализовать диагностику средств моделирования, чтобы отсеять те ошибки в выходной информации, которые вызваны неисправностями функционирующей аппаратуры. В ходе машинного эксперимента могут иметь место и ошибочные действия человека-оператора. В этих условиях серьезные задачи стоят в области эргономического обеспечения процесса моделирования. [4]

 

4.3. Стадии разработки моделей.

На базе системного подхода  может быть предложена и некоторая  последовательность разработки моделей, когда выделяют две основные стадии проектирования: макропроектирование и микропроектирование.

На стадии макропроектирования  на основе данных о реальной системе  и внешней среде строится модель внешней среды, выявляются ресурсы и ограничения для построения модели системы, выбирается модель системы и критерии, позволяющие оценить адекватность модели реальной системы. Построив модель системы и модель внешней среды, на основе критерия эффективности функционирования системы в процессе моделирования выбирают оптимальную стратегию управления, что позволяет реализовать возможности модели по воспроизведению отдельных сторон функционирования реальной системы.

Стадия микропроектирования  в значительной степени зависит  от конкретного типа выбранной модели. В случае имитационной модели необходимо обеспечить создание информационного, математического, технического и программного обеспечении системы моделирования. На этой стадии можно установить основные характеристики созданной модели, оценить время работы с ней и затраты ресурсов для получения заданного качества соответствия модели процессу функционирования системы.

Независимо от типа используемой модели при ее построении необходимо руководствоваться рядом принципов  системного подхода:

1)пропорционально-последовательное продвижение по этапам и направлениям создания модели;

2) согласование информационных, ресурсных, надежностных и других характеристик;

3) правильное соотношение  отдельных уровней иерархии в  системе моделирования;

Информация о работе Методы моделирования в исследовании систем управления