Автор работы: Пользователь скрыл имя, 24 Июля 2014 в 00:52, курсовая работа
Цель курсовой работы:
Выделить теоретические основы управления инвестиционными рисками предприятия и провести оценку инвестиционных рисков предприятия в системе инвестиционных решений.
Задачи курсовой работы:
1) Рассмотреть понятие инвестиционный риск, виды инвестиционных рисков, цели управления инвестиционными рисками.
2) Провести анализ рисков представленного проекта, сделать вывод о его целесообразности.
3) Проанализировать инвестиционный риск при оценке привлекательности инвестиционного климата
Введение…………………………………………………………………………...3
Глава 1. Теоретические основы управления инвестиционными рисками предприятия……………………………………………………………………….6
Понятие инвестиционного риска, основные черты управления инвестиционным риском …………………………………………………….6
Нормативно – правовая база инвестиционных рисков……………………19
Глава 2. Оценка инвестиционных рисков предприятия в системе инвестиционных решений………………………………………………………32
2.1 Анализ рисков инвестиционного проекта…………………………………32
2.2 Классические модели оценки риска………………………………………..47
2.3 VаR – модели оценки инвестиционных рисков………………………………
2.4 Методы борьбы с инвестиционными рисками……………………………….
Глава 3. Разработка и реализация мер по управлению инвестиционными рисками….
3.1 Управление инвестиционными рисками в коммерческом банке……………
3.2 Способы уклонения от рисков………………………………………………
Заключение………………………………………………………………………….
Список использованной литературы………………
Этот показатель играет весьма важную роль во внутрибанковском планировании.
Трейдеры по ценным бумагам могут использовать этот показатель в частности для торговли относительной стоимостью (ценные бумаги сходного кредитного качества должны иметь близкие значения вероятности дефолта).
Во внутри банковском планировании, например при приведении стоимости фондирования разных направлений бизнеса внутри банка к безрисковым ставкам, а также для расчетов стоимости хеджирования кредитных рисков, коммерческие банки пользуются этим подходом.
Умножая данный показатель на стоимость актива, можно теоретически определить стоимость хеджирования или в случае кредитования клиента банком размер компенсации за дополнительный риск.
Для расчета предполагаемой вероятности дефолта предположим, что вероятность его наступления в период между любыми двумя последовательными платежами не зависит от срока до погашения ценной бумаги. Такой подход аналогичен тому, который используется при расчете доходности к погашению по облигациям, когда при расчете приведенной стоимости будущих платежей в качестве ставки дисконтирования используется одна и та же процентная ставка — доходность к погашению, рассчитываемая по формуле:
где YTM — доходность к погашению; Сi , — платеж по облигации в момент времени Тi; YTM = r + Risk Premium, где r — безрисковая процентная ставка.
Для расчета приведенной стоимости будущих платежей в качестве ставки дисконтирования будет использоваться безрисковая процентная ставка, так как весь риск будет заложен в оценке вероятных платежей.
Пусть Р — вероятность наступления дефолта в период между любыми двумя последовательными платежами. Тогда вероятность того, что дефолт не наступит в первый период выплаты по ценной бумаге, равна (1 - Р), а в i-й период — произведению вероятностей ненаступления дефолта во все предыдущие периоды и (1 - Р), т. е. (1 – P) .
Аналогично вероятность того, что дефолт наступит именно в i-й период, равна (1 - Р) Р.
В случае если дефолт не наступает, держатель ценной бумаги получает платеж Сi, а в случае дефолта — остаточную стоимость ценной бумаги RV.
Таким образом, с учетом риска наступления дефолта инвестор может рассчитывать на получение i-го платежа в размере (1 - Р) Сi,- + (1 – P)
align="BOTTOM" border="0" />P*RV.
При этом текущая приведенная стоимость PV, такого платежа будет равна
PVi = [(1 - Р) С + (1 - P) P*RV]/(1 + r) , (3.2)
где r — безрисковая доходность (для долларовых облигаций — доходность по US Treasuries или местному инструменту с минимальным риском дефолта).
Рыночная стоимость ценных бумаг равна сумме приведенных стоимостей всех платежей, таким образом, зная рыночную цену, можно рассчитать предполагаемую вероятность дефолта:
Такое распределение вероятности описывается экспоненциальной зависимостью: D(T) = 1 – е — функция распределения вероятности дефолта в течение срока, где р — плотность распределения вероятности дефолта.
Вероятность Р может быть выражена следующим образом:
Р = 1 - е . (3.4)
Отметим, что для большинства ценных бумаг (Тi - Т ) величина постоянная, т. е. величина Р не зависит от срока до погашения.
Формула для приведенной стоимости ценной бумаги может быть сведена к следующей:
и задача сводится к нахождению р. Таким образом, зная величину, можно определить годовую вероятность дефолта по формуле D = 1 - e .
D(T) — вероятность наступления дефолта в течение срока Т, где р — плотность распределения вероятности дефолта (в нашем предположении р не зависит от времени). dD(t) = (1 - D(t))pdt — приращение функции распределения вероятности дефолта при приращении времени на dt. d(l - D(t))/(l - D(t)) = -pdt. Отсюда D(t) = 1 – e .
Вероятность ненаступления дефолта в течение срока Тi равна произведению вероятности ненаступления дефолта в срок Т на (1 - Р), т. е. е (1 - Р) = е . Отсюда P = 1 - e .
Приведенная выше модель может быть использована инвесторами и трейдерами для сравнения ценных бумаг сходного кредитного качества.
Например, при уровне остаточной стоимости 12% от номинальной стоимости предполагаемая годовая вероятность дефолта по российским еврооблигациям в начале марта составляла 9 — 11%.
В то же время по ОВГВЗ составляет от 11% (по 7-му траншу) до 25% (по 4-му траншу), что говорит о несоответствии оценки ценных бумаг участниками рынка и агентством Standard & Poor's, которое недавно уравняло рейтинги ОВГВЗ и еврооблигаций на уровне ССС+.
Коммерческими банками такая модель может быть использована для расчета маржи над безрисковой процентной ставкой для заемщиков с различным рейтингом.
Рассмотрим ситуацию, когда в банке существует система внутренних рейтингов заемщиков и некоторые кредиты имеют частичное покрытие, которое может рассматриваться как остаточная стоимость в случае неисполнения заемщиком своих обязательств.
Предполагается выдать кредит заемщику с рейтингом, предполагающим 10%-ю вероятность неисполнения обязательств. Кредит подлежит погашению через год с выплатой половины суммы через полгода и оставшейся суммы через год.
Если безрисковая ставка в данной валюте составляет 15%, а остаточная стоимость 20% от суммы кредита, то согласно приведенной модели процентная ставка должна составлять 23,85%.
В случае изменения рейтинга заемщика (оценки вероятности неисполнения обязательств) с помощью этой же модели можно переоценить стоимость кредита. Например, если через 3 месяца после выдачи кредита рейтинг заемщика предполагает вероятность неисполнения обязательств 15%, а остаточная стоимость оценивается в 10%, то стоимость такого кредита будет составлять 97,3%.
Рассмотрим еще один пример, где применяется данная модель. Компания обращается в банк за возобновлением кредита. С момента подачи последней заявки кредитоспособность компании, по мнению банка, упала и риск кредитования возрос, по крайней мере, на 10 процентных пунктов, до 20%.
По сравнению с предыдущим разом в случае продажи займа на рынке вы получили бы только 90 центов/долл. При той же оценке уровня остаточной стоимости изложенная выше методология предлагает вам повысить ставку займа на 10,4 процентных пунктов, с 23,85 до 34,25%.
Таким образом, модель оценки вероятности дефолта может быть инструментом оценки рыночной стоимости существующих долгов, а также механизмом определения процентных ставок по кредитам с учетом риска заемщика.
Для трейдеров наряду с доходностью к погашению данная модель может служить удобным инструментом для сравнения привлекательности облигаций различных эмитентов, позволяя численно определить уровень риска дефолта.
Для коммерческих банков применение данной методологии осложнено российскими реалиями, например:
• дифференциацией отношений компаний с кредиторами: одним платят, другим нет;
• отсутствием внутрироссийских рейтингов компаний и др.
Тем не менее внутри банков рейтинги заемщиков должны существовать, поэтому некоторые элементы предложенного подхода могут быть использованы как элементы в создании внутрибанковских методик оценки рисков.
Рассмотрим как производится оценка доходности и риска ценных бумаг с фиксированным доходом, в частности векселей и облигаций.
Сейчас трудно найти работу, в которой бы проводился вероятностный анализ доходности и риска долговых обязательств. Скорее всего, это связано с тем, что доходность такого рода бумаг не лежит в произвольно широких пределах, как это имеет место для акций и паев взаимных фондов на акциях. Моделируя ценные бумаги с фиксированным доходом, мы знаем параметры выпуска (дата выпуска, цена размещения, дата погашения, число купонов, их размер и периодичность). Единственное, чего мы не знаем, - это то, как будет изменяться котировка этих бумаг на рынке в зависимости от текущей стоимости заемного капитала, которая косвенно может быть оценена уровнем федеральной процентной ставки страны, где осуществляются заимствования.
Идея вероятностного анализа долговых обязательств, представленная здесь, состоит в том, чтобы отслоить от истории сделок с долговыми обязательствами неслучайную составляющую цены (тренд).
Тогда оставшаяся случайная составляющая (шум) цены может рассматриваться нами как случайный процесс с непрерывным временем, в сечении которого лежит нормально распределенная случайная величина с нулевым средним значением и со среднеквадратичным отклонением (СКО), равным s(t), где t – время наблюдения случайного процесса. Ожидаемый вид функции s(t) будет исследован нами позже.
Получим аналитический вид трендов долговых обязательств и для начала рассмотрим простейшие случаи таких выражений, которые имеют место для дисконтных бескупонных облигаций и дисконтных векселей.
Пусть бумага данного вида эмитирована в момент времени TI по цене N0 < N, где N – номинал ценной бумаги. Тогда разница N – N0 составляет дисконт по бумаге. Параметрами выпуска также определен срок погашения бумаги TM, когда владельцу бумаги возмещается ее номинал в денежном выражении.
Пусть t – момент времени, когда инвестор собирается приобрести бумагу. Определим ее справедливую рыночную цену С(t). Это выражение и является трендом для случайного процесса цены бумаги.
Пусть время в модели дискретно, а интервал дискретизации - год. Бумага выпускается в обращение в начале первого года, а гасится в конце n – го. Тогда рыночная цена дисконтного инструмента, приобретаемого в начале (k+1) – го года обращения бумаги, имеет вид:
(3.6)
где r – внутренняя норма доходности долгового инструмента, определяемая по формуле:
(3.7)
Формула (3.6) предполагает, что на рынке имеются бумаги с той же самой внутренней нормой доходности, что и наша, которые при этом имеют реинвестируемые купонные платежи, а период реинвестирования равен одному году. Если бы не так, то расчет следовало бы вести по формуле, предполагающей, что период реинвестирования платежей совпадает с периодом обращения дисконтного инструмента.
Получим аналоги формул (3.6) и (3.7) для непрерывного времени, предполагая по ходу, что реинвестирование также идет в непрерывном времени с периодом бесконечно малой длительности. Это делается следующим образом. Разобъем весь период обращения ценной бумаги [TI, TM] на интервалы числом n и длительностью
(3.8)
Обозначим t = TI + k * D и применим к расчету рыночной цены бумаги формулы (3.6) и (3.7). Это дает:
, (3.9)
(3.10)
Предельный переход в (3.9) и (3.10) при D ® 0 дает:
(3.11)
(3.12)
Рис. 3.1.1. Функция справедливой цены дисконтной облигации
Это и есть соотношение для справедливой цены дисконтной бумаги для непрерывного времени. Качественный вид функции (3.10) представлен на рис. 3.1.1.
Сделаем предположение о характере шума цены. Для этого построим частную производную цены по показателю внутренней нормы доходности бумаги:
(3.13)
Видно, что чувствительность цены к колебаниям процентной ставки имеет нестационарный вид и убывает до нуля по мере приближения срока погашения бумаги.
Таким образом, резонно искать среднеквадратичное отклонение (СКО) шума как функцию вида:
(3.14)
Ожидаемый вид СКО представлен на рис. 3.1.2.
С практической точки зрения это означает следующее. Мы наблюдаем случайный процесс цен на бумаги, который можно обозначить H(t). Тогда шум процесса имеет вид
где C(t) – тренд цены - определяется по (6.6).
Рис. 3.1.2. Ожидаемый вид функции СКО
Перейдем от нестационарного шума к стационарному введением корректирующего делителя
. (3.16)
Тогда процесс e*(t) является стационарным, и в его сечении находится случайная величина с матожиданием 0 и с СКО s0. И определение фактического значения параметра s0 этого процесса может производиться стандартными методами.
Теперь посмотрим, что делается со случайной величиной доходности долгового инструмента, в процентах годовых:
(3.17)
где Т - период владения долговым инструментом.
Заметим здесь, что рыночная цена H(t), измеренная в момент t, не рассматривается нами как случайная величина, так как ее значение в этот момент известно. Эта же цена неизвестна в будущем времени (t + T) и является случайной величиной, которая имеет нормальное распределение с матожиданием С(t + T) и СКО s (t + T) (эти функции вычисляются по формулам (3.11) и (3.14)).
Cлучайный процесс доходности на интервале [t, t+T] в сечении имеет параметры:
(3.18)
(3.19)
Рассмотрим пример анализа доходности дисконтной облигации.
Облигация номиналом N = 1000$ выпускается в обращение в момент времени TI = 0 (далее все измерения времени идут в годах) сроком на 2 года c дисконтом 30%, то есть по эмиссионной цене N0 = 700$. Инвестор намеревается приобрести бумагу в момент времени t =1. В этот момент текущая цена бумаги на рынке составляет H(1) = 820$. Для проведения статистического анализа доступна история сделок с бумагой за истекший год ее обращения. Требуется идентифицировать доходность облигации R(t=1, T) на протяжении оставшегося года владения ( T О [0, 1] ) как случайный процесс и определить параметры этого процесса.