Модели риска дефолта

Автор работы: Пользователь скрыл имя, 29 Мая 2012 в 20:43, курсовая работа

Описание работы

Становление России как государства с рыночной экономикой требует пересмотра взаимоотношений между хозяйствующими субъектами внутри страны. Одним из приоритетных направлений является развитие банковского сектора, где преобладают риск и неопределенность при принятии кредитных решений. Взаимоотношения между банком и заемщиком являются для России новыми и, соответственно, слабоизученными, прежде всего из-за существовавшей несколько десятилетий назад плановой экономики, где весь процесс сотрудничества предприятий и банков носил административно-командный характер.

Содержание работы

ВВЕДЕНИЕ………………………………………………………………………..2
1. Методы оценки риска…………………………………………………………..5
1.1 ОБЩИЕ ПРИНЦИПЫ ОЦЕНКИ РИСКА…………………………………………….5
1.2 РАСЧЕТ ВЕРОЯТНОСТИ ДЕФОЛТА ЗАЕМЩИКА………………………………….7
1.3 ОЦЕНКА РИСКА ДЕФОЛТА ПО КАПИТАЛИЗАЦИИ………………………………11
2. ДОБАВЛЕНИЕ АКТИВА К ПОРТФЕЛЮ……………………………………………21
2.1 БАЗОВАЯ ФОРМУЛА……………………………………………………………22
2.2 РАСПРЕДЕЛЕНИЕ КАПИТАЛА…………………………………………………..24
2.3 КАРТА "РИСК-ДОХОДНОСТЬ"………………………………………………….25
ЗАКЛЮЧЕНИЕ………………………………………………………………….34
СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ……………………………..36

Файлы: 1 файл

, Модели риска дефолта, 2.doc

— 340.00 Кб (Скачать файл)

 

Методы оценки риска > Риск дефолта > Оценка риска дефолта по капитализации

 

1.3 Оценка риска дефолта по капитализации

 

Расчет PD по данным капитализации и долгов осуществляется по адаптированной нами к российскому нестабильному рынку известной американской модели CreditGrades (RiskMetrics group), которая является обобщением известного класса структурных моделей, в основе которых лежит подход Нобелевского лауреата Роберта Мертона. Базовые положения модели

Активы компании - случайная функция

Дефолт происходит в момент падения активов до уровня, определяемого внешним долгом

Входными данными модели служит исторический ряд капитализации и долгов компании. Исследуется случайный процесс движения активов Vt компании[5]

 

 

Где на каждом квартале волатильность и тренд полагается постоянным, но изменяющимся от квартала к кварталу, Wt - классическая диффузия. Если величина активов падает ниже уровня, определяемого долгом, который тоже подразумевается случайным, то наступает дефолт. В модели есть два, калибруемых под условия реального рынка, параметра. Мы калибровали модель под рейтинги полтора десятка известных открытых российских компаний, предоставленные уважаемым агентством S&P по международной шкале, учитывающей суверенный (страновой) риск. Этим рейтингам напрямую сопоставляются соответствующие значения PD, по которым и производилась калибровка. На рис.3 представлены результаты расчетов исторического ряда PD для примера двух компаний "Юкос" и "Ростелеком". PD представлены за год и два года на одном графике, на нижних графиках даны зависимости капитализации и долгов за расчетный период времени.

 

 

 

Рис.3. Временной ряд PD, капитализации и долгов некоторых российских компаний

Для расчета риска по портфелю необходимо по каждой компании и ее долгам банку ввести необходимые характеристики:

PD заемщика и ошибку вычисления PD, если компания рейтингована некачественно:

Дата вычисления PD.

Даты выдачи кредитов.

Даты погашения кредитов.

RR кредитов, оцененные по обеспечению и приоритету.

Величины кредитов в любых условных единицах.

Номера схем кредитования, например, первая - "тело в конце, проценты помесячно", вторая - "тело равными долями помесячно плюс проценты на оставшуюся часть" и т.д.

Шифр принадлежности заемщика определенным финансово-отраслевым, региональным группам

После оценок PD заемщиков портфеля и предоставления необходимой информации по кредитным операциям, обеспечению и лимитам заемщика можно перейти к расчету риска портфеля. На выходе расчета портфельного риска будут несколько главных показателей риска в целом и вклада в риск каждого заемщика. В том числе: ожидаемые потери (EL, expected loss) по портфелю и для каждого заемщика в отдельности, величины, характеризующие непредвиденные потери портфеля и доли капитала под риском, приходящиеся на каждого заемщика. Имея эти показатели можно сделать вывод о достаточности экономического капитала, выделить наиболее рисковых и малорентабельных заемщиков. Основные рисковые показатели следующие:

EL по каждому кредиту в%

Величина капитала под риском, приходящаяся на каждого заемщика или группу заемщиков, а также относительная прибыльность ее в рамках портфеля (RAROC)[6]

Общие характеристики риска портфеля:

ожидаемые потери EL по портфелю

Capital at Risk портфеля при уровне надежности

величина Shortfall портфеля, дисперсия потерь

Наиболее рисковые и низко рентабельные заемщики портфеля

Основная особенность методики расчета кривой распределения потерь по портфелю состоит в одновременном сочетании двух методов вычисления распределения - метода типа Монте-Карло и метода, основанного на рекуррентной формуле.

Первый метод, Блуждающих дефолтов (WDM, wandering defaults model), был эксклюзивно разработан для адекватного анализа портфеля крупных российских заемщиков, он учитывает многие особенности изменения портфельного риска, но рассчитан на небольшое (до сотни-двух) количество заемщиков. Второй метод, CreditRisk+, является классическим весьма продуктивным методом, основанным на допущениях, которые особенно естественны для некрупных и несвязанных между собой заемщиков. Разбиение портфеля на две части позволяет одновременно учесть особенности модели распределения риска по крупным и быстро рассчитать риск для большого числа мелких заемщиков, полагая их независимыми. Свертка двух кривых потерь для портфелей крупных и мелких заемщиков банка дает основную кривую потерь по кредитным операциям для всего портфеля банка. По этой кривой и вычисляются все основные характеристики кредитного риска.

Важным вопросом кредитного риск менеджмента является вопрос об вкладе каждого заемщика в капитал под риском, аллокируемый на портфель. Зная величину части CAR, доставшуюся заемщику, можно вычислить рентабельность его в портфеле с учетом риска (показатель RAROC), это можно сделать зная общий CAR портфеля, имея кривую потерь, а также ожидаемые потери и величину заемных средств на каждого. Современная методика, основанная на Saddle point формуле, позволяет дать наиболее адекватное распределение CAR. Это распределение особенно важно тем, что позволяет выявить заемщиков, доставляющих портфелю наибольший риск. А наши исследования реальных банковских портфелей показали, что почти всегда имеются заемщики, у которых уменьшение долга почти на столько же снижает общую величину CAR портфеля. Методика распределения долей CAR позволяет смоделировать поведение нового актива (займа) в портфеле на фоне рисков других заемщиков. На основе этого можно давать обоснованные риск-доходом рекомендации по лимитам и обеспечению для будущего кредита, опираясь на требование "не портить" общие показатели риск-доход. Примерно так, как показано на рисунке, выглядит распределение показателей рисков компаний портфеля, наиболее рисковых заемщиков, а также кривая потерь для реального портфеля 64 крупных заемщиков.

 

 

 

 

Оценка кредитных рисков: модель блуждающих дефолтов

 

Модель блуждающих дефолтов (WDM) является, по нашему мнению, наиболее адекватной для российских заемщиков, поскольку в условиях молодого российского рынка невозможно учесть переход компании из одного рейтинга (или PD) в другой матрицей транзакций, как это делает, например, RiskMetrics, - в условиях недостатка статистики такую матрицу негде взять.

В модели WDM возможность перехода компаний в другой рейтинг (PD) учитывается одним или минимальным количеством параметров. Модель была отработана и сопоставлена с классической моделью CreditRisk+ и дает идентичные распределения для идентичных начальных данных. Все допущения модели проверялись на временных рядах десятков российских компаний и ее параметры получены из статистически достаточного количества данных. Коротко, модель можно описать несколькими тезисами

Основной метод - симуляция Монте-Карло значений PV (Present Value - дисконтированная стоимость портфеля)[7]

Основной параметр симуляции - время до дефолта заемщика, симулируется на основе функции отказа

Основной принцип симуляции - коррелированные блуждания ln (PD) каждого заемщика портфеля один раз в квартал

Основной эффект WDM - нелинейная зависимость PD от времени

Основные преимущества использования WDM для портфеля российских заемщиков

учет случайных изменений PD одним параметром

отсутствие ограничений по длине портфеля и PD заемщиков

поддержка любой структуры cash flow кредитных линий

статистическая и экономическая обоснованность положений WDM на опыте российских компаний

Поквартальное случайное блуждание PD заемщика оказывает влияние на вероятность дефолта на заданном отрезке времени. Для небольшой длины кредита, порядка нескольких кварталов n, PD имеет нелинейную составляющую, дающую увеличение вероятности дефолта, по сравнению с той, когда годовое PD полагается постоянным. Асимптотическая формула PD была получена нами. При небольших n>1 и стандартного отклонения квартальных изменений ln (PD) она имеет вид

 

Однако на большом участке времени проявляется эффект эргодичности (Рис.1), который дает не стопроцентный дефолт, что связано с возможностью ухода годового PD в экстремально малые значения. Как, например, компания Кока-Кола, имеющая на заре своей деятельности PD в десятки процентов, уже живет сотню лет и вряд ли обанкротится. Использование расчетного модуля, созданного по модели WDM, позволило провести широкий спектр научно-практических расчетов для реальных и модельных портфелей.

 

Рис. 1 Вид функций отказа с учетом блужданий и без

 

 

Результаты этих расчетов и продолжительные наблюдения за особенностями поведения некоторых показателей риска позволили сделать выводы, основные из которых можно перечислить:

Для модельных портфелей без учета блужданий, корреляций и сложного cash flow результаты расчетов по методам WDM и CreditRisk+ совпадают[8].

Значительное влияние на показатели риска оказывают дисперсия скачков ln (PD) и средняя длина портфеля.

В реальных портфелях встречаются заемщики, уменьшение долга которых приводит к значительному сокращению CAR.

Заметное влияние на риск оказывают даты вычисления PD, устаревшие данные по PD увеличивают риск потерь.

Существенными факторами риска по портфелю являются средние значения распределений кредитов (диверсификация) и наличие особо рисковых компаний.

Влияние корреляции между заемщиками заметно усиливается по мере роста средней длины портфеля.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2. Добавление актива к портфелю

 

Согласно предписаниям Базельского комитета, каждому банку рекомендуется иметь собственную внутреннюю систему рейтингования заемщиков, которая сможет дать количественную характеристику каждому заемщику в виде вероятности его возможного дефолта по долгам в течение будущего года (PD, Probability of Default). Имея PD - характеристики заемщиков в портфеле, объем кредитных средств каждого, находящихся под риском, длины кредитов, а также оценив по обеспечению относительные потери в случае дефолта (LGD, Loss Given Default) можно вычислить распределение потерь по портфелю. Для этого можно использовать, например, известные модели CreditRisk+ или CreditMetrics. Это распределение показывает основные характеристики риска портфеля, такие как ожидаемые потери по портфелю (EL, Expected Loss), величину VAR (Value at Risk) портфеля при заданном уровне надежности (99%, например), а также ShortFall и стандартное отклонение потерь. Зная величину EL, можно оценить необходимый резервный фонд для покрытия средних убытков, из-за проблемных активов, отчисления в который должны осуществляться с каждого кредита, пропорционально его EL. Величина VAR, умноженная на общую сумму активов под риском EAD (Exposure at Default) (т.е. CAR=VAR EAD), укажет на необходимую величину собственного капитала для обеспечения требуемой надежности.

Для оценки рентабельности кредитной деятельности существует емкий показатель RAROC (Risk Adjusted Return on Capital), дающий доходность капитала с учетом риска[9]

 

 

где r - средняя валовая маржа, EL - ожидаемые среднегодовые потери портфеля. Такой же показатель RAROCi можно вычислить и для каждого отдельного заемщика или актива "i", зная его вклад в VAR, доходность и риск. Очевидно, что если его RAROCi ниже общего RAROC, то такой актив "портит" показатель доходности всего портфеля. Активы и заемщики с наименьшим показателями RAROCi являются не рентабельными. Заемщики с наибольшей долей в VAR являются рисковыми в портфеле. Таким образом, руководствуясь этими показателями можно дать четкие количественные рекомендации по лимитам, уровню обеспечения и срокам кредитования.

 

2.1 Базовая формула

 

Метод расчета вероятности дефолта заемщика для компаний, не котирующихся на рынке, которых большинство в кредитном портфеле, основан на базовой формуле, устанавливающей зависимость между финансовыми отношениями из бухгалтерских отчетов и PD. После вычисления базового PD строится экспертная оценка, из которой следует общий балл заемщика, корректирующий этот PD. Основные финансовые отношения x1,x2,... x7 для базовой формулы, вычисляемые из квартальных отчетов 1-ой и 2-ой формы за последний год, следующие:

логарифм годовой выручки (log USD);

операционная маржа = операционная прибыль/годовая выручка;

доходность активов = операционная прибыль/активы;

покрытие процентов = операционная прибыль/проценты за кредиты;

структура капитала = собственный капитал/активы;

покрытие обязательств = свободные денежные средства/обязательства;

ликвидность = оборотные активы/ краткосрочные обязательства.

Формула для среднегодовой вероятности дефолта берется в логитном виде, аналогично используемой в Moodyes RISKCALC и "Норвежской модели"[10]

 

 

в нее входят веса и параметры, определенные аналитиками для производственных и торговых российских компаний. Формула дает возможность по непрерывному ряду квартальных отчетов вычислять ряд PD, который испытывает колебания в согласии с изменением финансового положения компании. Для расчета одного значения PD необходимо представление финансовых отчетов на протяжении предыдущего года, поскольку финансовые отношения, вычисляемые за год, нивелируют сезонные колебания.

Вторая часть оценки PD состоит в качественной оценке заемщика, осуществляемой опытным оценщиком банка. Она необходима для учета дополнительных факторов, отсутствующих в базовой формуле. Специалист отвечает на несколько десятков вопросов, касающихся бизнеса компании, которые должны влиять на риск дефолта. Баллы за ответы суммируются с учетом весовых коэффициентов по разделам. Прежде чем отвечать на вопросы, оценщик должен тщательно подготовить свое мнение по максимальной имеющейся информации, предоставленной компанией - заемщиком. После ответа на вопросы вычисляется поправочный коэффициент к базовой оценке PD, который может увеличить или уменьшить ее. В нейтральном случае коэффициент остается равным единице.

Информация о работе Модели риска дефолта