Автор работы: Пользователь скрыл имя, 02 Июля 2014 в 21:58, курсовая работа
Обмен веществ, или метаболизм, — лежащий в основе жизни закономерный порядок превращения веществ и энергии в живых системах, направленный на их сохранение и самовоспроизведение; совокупность всех химических реакций, протекающих в организме. Ф. Энгельс, определяя жизнь, указывал, что её важнейшим свойством является постоянный О. в. с окружающей внешней природой, с прекращением которого прекращается и жизнь. Т. о., О. в. — существеннейший и непременный признак жизни.
ВВЕДЕНИЕ 3
I. Ассимиляция 5
II. Диссимиляция 8
III. Связь обмена углеводов, липидов, белков и других соединений 11
IV. Роль витаминов и минеральных веществ в обмене веществ 12
V. Регуляция обмена веществ 13
VI. Нарушения обмена веществ 15
ЗАКЛЮЧЕНИЕ 17
Список литературы: 20
Так, продукты дезаминирования аспарагиновой и глутаминовой кислот — щавелево-уксусная и a-кетоглутаровая кислоты — являются вместе с тем важнейшими звеньями окислительных превращений углеводов, происходящих в процессе дыхания. Пировиноградная кислота — важнейший промежуточный продукт, образующийся при брожении и дыхании,— также тесно связана с белковым обменом: взаимодействуя с NH3 и соответствующим ферментом, она даёт важную аминокислоту a-аланин. Теснейшая связь процессов брожения и дыхания с обменом липидов в организме проявляется в том, что фосфоглицериновый альдегид, образующийся на первых этапах диссимиляции углеводов, является исходным веществом для синтеза глицерина. С др. стороны, в результате окисления пировиноградной кислоты получаются остатки уксусной кислоты, из которых синтезируются высокомолекулярные жирные кислоты и разнообразные изопреноиды (терпены, каротиноиды, стероиды). Т. о., процессы брожения и дыхания приводят к образованию соединений, необходимых для синтеза жиров и др. веществ.
В превращениях веществ в организме важное место занимают витамины, вода и различные минеральные соединения. Витамины участвуют в многочисленных ферментативных реакциях в составе коферментов. Так, производное витамина B1 — тиаминпирофосфат — служит коферментом при окислительном декарбоксилировании (a-кетокислот, в том числе пировиноградной кислоты; фосфорнокислый эфир витамина B6 — пиридоксальфосфат — необходим для каталитического переаминирования, декарбоксилирования и др. реакций обмена аминокислот. Производное витамина А входит в состав зрительного пигмента. Функции ряда витаминов (например, аскорбиновой кислоты) окончательно не выяснены. Разные виды организмов различаются как способностью к биосинтезу витаминов, так и своими потребностями в наборе тех или иных поступающих с пищей витаминов, которые необходимы для нормального О. в.
Важную роль в минеральном обмене играют Na, К, Ca, Р, а также микроэлементы и др. неорганического вещества. Na и К участвуют в биоэлектрических и осмотических явлениях в клетках и тканях, в механизмах проницаемости биологических мембран; Ca и Р — основные компоненты костей и зубов; Fe входит в состав дыхательных пигментов — гемоглобина и миоглобина, а также ряда ферментов. Для активности последних необходимы и др. микроэлементы (Cu, Mn, Mo, Zn).
Решающую роль в энергетических механизмах О. в. играют эфиры фосфорной кислоты и прежде всего аденозинфосфорные кислоты, которые воспринимают и накапливают энергию, выделяющуюся в организме в процессах гликолиза, окисления, фотосинтеза. Эти и некоторые др. богатые энергией соединения (см. Макроэргические соединения) передают заключённую в их химических связях энергию для использования её в процессе механической, осмотической и др. видов работы или же для осуществления синтетических реакций, идущих с потреблением энергии (см. также Биоэнергетика).
Удивительная согласованность и слаженность процессов О. в. в живом организме достигается путём строгой и пластичной координации О. в. как в клетках, так и в тканях и органах. Эта координация определяет для данного организма характер О. в., сложившийся в процессе исторического развития, поддерживаемый и направляемый механизмами наследственности и взаимодействием организма с внешней средой.
Регуляция О. в. на клеточном уровне осуществляется путём регуляции синтеза и активности ферментов. Синтез каждого фермента определяется соответствующим геном. Различные промежуточные продукты О. в., действуя на определённый участок молекулы ДНК, в котором заключена информация о синтезе данного фермента, могут индуцировать (запускать, усиливать) или, наоборот, репрессировать (прекращать) его синтез. Так, кишечная палочка при избытке изолейцина в питательной среде прекращает синтез этой аминокислоты. Избыток изолейцина действует двояким образом: а) угнетает (ингибирует) активность фермента треониндегидратазы, катализирующего первый этап цепи реакций, ведущих к синтезу изолейцина, и б) репрессирует синтез всех ферментов, необходимых для биосинтеза изолейцина (в т. ч. и треониндегидратазы). Ингибирование треониндегидратазы осуществляется по принципу аллостерической регуляции активности ферментов.
Предложенная французскими учёными Ф. Жакобом и Ж. Моно теория генетической регуляции рассматривает репрессию и индукцию синтеза ферментов как две стороны одного и того же процесса. Различные репрессоры являются в клетке специализированными рецепторами, каждый из которых «настроен» на взаимодействие с определённым метаболитом, индуцирующим или репрессирующим синтез того или иного фермента. Таким образом, в клетки, полинуклеотидных цепочках ДНК заключены «инструкции» для синтеза самых разнообразных ферментов, причём образование каждого из них может быть вызвано воздействием сигнального метаболита (индуктора) на соответствующий репрессор (подробнее см. Молекулярная генетика, Оперон).
Важнейшую роль в регуляции обмена веществ и энергии в клетках играют белково-липидные биологические мембраны, окружающие протоплазму и находящиеся в ней ядро, митохондрии, пластиды и др. субклеточные структуры. Поступление различных веществ в клетку и выход их из неё регулируются проницаемостью биологических мембран. Значительная часть ферментов связана с мембранами, в которые они как бы «вмонтированы». В результате взаимодействия того или иного фермента с липидами и др. компонентами мембраны конформация его молекулы, а следовательно, и его свойства как катализатора будут иными, чем в гомогенном растворе, Это обстоятельство имеет огромное значение для регулирования ферментативных процессов и О. в. в целом.
Важнейшим средством, с помощью которого осуществляется регуляция О. в. в живых организмах, являются гормоны. Так, например, у животных при значительном понижении содержания caxapa в крови усиливается выделение адреналина, способствующего распаду гликогена и образованию глюкозы. При избытке сахара в крови усиливается секреция инсулина, который тормозит процесс расщепления гликогена в печени, вследствие чего в кровь поступает меньше глюкозы. Важная роль в механизме действия гормонов принадлежит циклической аденозинмонофосфорной кислоте (цАМФ). У животных и человека гормональная регуляция О. в. тесно связана с координирующей деятельностью нервной системы (см. Нервная регуляция).
Благодаря совокупности тесно связанных между собой биохимических реакций, составляющих О. в., осуществляется взаимодействие организма со средой, являющееся непременным условием жизни. Ф. Энгельс писал: «Из обмена веществ посредством питания и выделения... вытекают все прочие простейшие факторы жизни...» («Анти-Дюринг», 1966, с. 80). Т. о., развитие (онтогенез) и рост организмов, наследственность и изменчивость, раздражимость и высшая нервная деятельность — эти важнейшие проявления жизни могут быть поняты и подчинены воле человека на основе выяснения наследственно обусловленных закономерностей О. в. и сдвигов, происходящих в нём под влиянием меняющихся условий внешней среды (в пределах нормы реакции данного организма), См. также Биология, Биохимия, Генетика, Молекулярная биология и литературу при этих статьях.
Любое заболевание сопровождается нарушениями О. в. Особенно отчётливы они при расстройствах трофической и регуляторной функций нервной системы и контролируемых ею желёз внутренней секреции. О. в. нарушается также при ненормальном питании (избыточный или недостаточный и качественно неполноценный пищевой рацион, например недостаток или избыток витаминов в пище и др.). Выражением общего нарушения О. в. (а тем самым и обмена энергии), обусловленного изменением интенсивности окислительных процессов, являются сдвиги в основном обмене. Повышение его характерно для заболеваний, связанных с усиленной функцией щитовидной железы, понижение — с недостаточностью этой железы, выпадением функций гипофиза и надпочечников и общим голоданием. Выделяют нарушения белкового, жирового, углеводного, минерального, водного обмена; однако все виды О. в. так тесно взаимосвязаны, что подобное деление условно.
Нарушения О. в. выражаются в недостаточном или избыточном накоплении веществ, участвующих в обмене, в изменении их взаимодействия и характера превращений, в накоплении промежуточных продуктов О. в., в неполном или избыточном выделении продуктов О. в. и в образовании веществ, не свойственных нормальному обмену. Так, диабет сахарный характеризуется недостаточным усвоением углеводов и нарушением их перехода в жир; при ожирении происходит избыточное превращение углеводов в жир; подагра связана с нарушением выделения из организма мочевой кислоты. Избыточное выделение с мочой мочекислых, фосфорнокислых и щавелевокислых солей может привести к выпадению этих солей в осадок и к развитию почечнокаменной болезни. Недостаточное выделение ряда конечных продуктов белкового обмена вследствие некоторых заболеваний почек приводит к уремии. Накопление в крови и тканях ряда промежуточных продуктов О. в. (молочной, пировиноградной, ацетоуксусной кислот) наблюдается при нарушении окислительных процессов, расстройствах питания и авитаминозах; нарушение минерального обмена может привести к сдвигам кислотно-щелочного равновесия. Расстройство обмена холестерина лежит в основе атеросклероза и некоторых видов желчнокаменной болезни. К серьёзным расстройствам О. в. следует отнести нарушение усвоения белка при тиреотоксикозе, хроническом нагноении, некоторых инфекциях; нарушение усвоения воды при диабете несахарном, солей извести и фосфора при рахите, остеомаляции и др. заболеваниях костной ткани, солей натрия — при аддисоновой болезни.
Диагностика нарушений О. в. основывается на исследовании газообмена, соотношения между количеством того или иного поступающего в организм вещества и выделением его, определении химических составных частей крови, мочи и др. выделений. Для изучения нарушений О. в. вводят изотопные индикаторы (например, радиоактивный йод — главным образом 131I — при тиреотоксикозе). Лечение нарушений О. в. направлено главным образом на устранение причин, их вызывающих.
Обмен веществ, представляет собой сложный процесс превращения химических элементов в организме, обеспечивающих его рост, развитие, деятельность и жизнь в целом.
Обмен веществ состоит из двух противоположных, одновременно протекающих процессов. Первый - анаболизм, или ассимиляция, объединяет все реакции, связанные с синтезом необходимых веществ, их усвоением и использованием для роста, развития и жизнедеятельности организма. Второй - катаболизм, или диссимиляция, включает реакции, связанные с распадом веществ, их окислением и выведением из организма продуктов распада.
Эти процессы согласованы между собой и образуют целостную систему, обеспечивающую нормальную функциональную жизнедеятельность организма человека. Нарушение баланса между этими двумя процессами жизнедеятельности неизбежно приводит к расстройству обмена веществ в организме.
В обменных процессах участвуют белки, углеводы, жиры, вода и минеральные соли. Важная роль в этих процессах принадлежит также витаминам.
Белки являются основным строительным материалом для восстановления и обновления клеток и тканей организма, они участвуют в образовании ферментов, гормонов и усвоении других пищевых веществ. Кроме того, с белками связано осуществление и других жизненно важных функций организма (рост, размножение).
Жиры незаменимые продукты питания в обеспечении многообразных жизненных функций организма. Они являются подлинным концентратом энергии.
Следует отметить, что жиры в умеренном количестве необходимы для нормальной жизнедеятельности организма, а их дефицит ведет к серьезным нарушениям, а иногда и гибели организма.
Необходимыми компонентами для организма являются углеводы, которые служат, в свою очередь, основным источником энергии. Обмен углеводов - это совокупность процессов их превращения в организме.
Обмен воды и минеральных ионов в организме тесно взаимосвязаны и взаимозависимы. Это обусловлено, прежде всего, необходимостью поддержания осмотического давления на относительно постоянном уровне во внутренней среде организма и в клетках.
Витамины являются составными компонентами ферментных систем и играют роль катализаторов в обменных процессах.
Регуляция обмена веществ на клеточном уровне осуществляется путём регуляции синтеза и активности ферментов. Важнейшим средством, с помощью которого осуществляется регуляция обмена веществ в живых организмах, являются гормоны.
Нарушение обмена веществ, как и любого другого естественного процесса, ведет к различным функциональным изменениям и наносит серьезный вред здоровью.
Причиной плохого обмена веществ так же может стать и несбалансированное питание, которое начинает проявляться со временем в процессе всей человеческой жизни. Но это не ведет к ожирению, как утверждают многие врачи. При метаболизме к основному составу крови примешиваются другие химические элементы, изменяя тем самым организацию обмена веществ.
Основной путь профилактики нарушения обмена веществ это, прежде всего сбалансированное ежедневное питание. Питание, которое содержит микроэлементы, витамины, белки, жиры, углеводы. Правильно подобранный режим питания и отдыха, защита окружающей среды от проникновения в неё токсических веществ, профилактика и своевременное лечение инфекционных заболеваний, стрессовых ситуаций.
Основное внимание при лечении нарушений обмена следует уделять рациону и режиму питания.
Каждый из перечисленных факторов в отдельности играет значительную роль при лечении нарушений обмена веществ. Однако наилучших результатов удается достичь при соблюдении комплексных мер.
1. Антонова О.А. Возрастная анатомия и физиология. / О.А. Антонова. – М.: Высшее образование, 2006. – 192с.
2. Вагнер Р. Генетика обмена веществ. / Р. Вагнер, Митчелл. - пер. с анг. – М.: Иностранная литература, 1958. – 428с.
3. Ващилова И.С. Обмен веществ. – www.zdorovieinfo.ru.
4. Грин Н. Биология в 3 томах. / Н. Грин, У. Стаут, Д. Тейлор. – М.: Мир, 2008. - 726с.
5. Дэгли С. Метаболические пути. / С. Дэгли, Д. Никольсон. – М.: Логос, 2000. – 189с.
6. Кирдина М. И. Особенности обмена веществ. - www. elit-material.ru.
7. Кулагина Е.В. Как улучшить обмен веществ. – www.medbibl.ru.
8. Ньюсхолм Э. Регуляция метаболизма. / Э. Ньюсхолм, К. Старт – М.: Мир, 2003. – 327с.
9. Покровский В.М. Физиология человека. / В.М. Покровский, Г.Ф. Коротько. – М.: Высшее образование, 2009. – 214с.
10. Сологуб Е.Б. Физиология человека. Общая. Спортивная. Возрастная. / Е.Б. Сологуб, А.С. Солодков. - М.: Олимпия Пресс, 2005. – 528с.
11. Судаков Н.А. Обмен веществ и энергии. / Н.А. Судаков // Ветеринар. – 2003. - №5. – С. 26.