Автор работы: Пользователь скрыл имя, 17 Января 2013 в 09:39, курс лекций
1. Введение о БЖД
2. Теоретические основы и практические цели БЖД
3. БЖД и производственная среда
4. Промышленная безопасность
5. Электробезопасность
По определению
ГОСТ 12.1.009-76: "Электробезопасность
− система организационных и
технических мероприятий и
Из всей совокупности ОВПФ наиболее травмирующим фактором является электрический ток.
В Российской Федерации ежегодно от электрического тока погибает ~ 2500 человек, откуда риск индивидуальной смерти от тока получается равным: 2500/145∙106 ≈ 16∙10-6, что втрое больше, чем в среднем на Земле (5∙10-6). Доля электротравм среди всей совокупности несчастных случаев на производстве составляла в России в 80-ые годы прошлого века 11.8% (каждая десятая травма на производстве связана с электрическим током). Это возможно было связано с низким уровнем автоматизации производственных процессов.
С момента промышленного использования электрической энергии пристальное внимание было направлено на специфику проявления электрического тока, не обнаруживаемого без непосредственного контакта с токоведущей частью, находящейся под напряжением, и тяжесть его воздействия на человека. Многочисленные исследования и инженерно-технические разработки привели в настоящее время к созданию надежной системы защитных мер от поражения током.
Действие тока на человека.
Ток оказывает термическое, электролитическое и биологическое действие.
По видам поражения воздействие подразделяется на:
- электротравмы - местное поражение тканей (ожоги, электрические знаки, металлизация кожи);
-электроудары - воздействие тока на весь организм.
По степени воздействия различают:
I степень - судорожные сокращения мышц без потери сознания;
II степень - судорожные сокращения мышц, потеря сознания;
III степень - потеря сознания, нарушение сердечной и/или дыхательной деятельности;
IV степень - клиническая смерть, т.е. отсутствие дыхания и кровообращения.
Факторы, определяющие исход поражения электрическим током:
1.Величина тока I (основной поражающий фактор). Смертельным для человека значением тока промышленной частоты 50 Гц считается ток
I = 100 мА.
При этом токе вероятность смертельного исхода наступает для 5% людей.
Выделяют три характерных значения тока промышленной частоты при его протекании через человека:
При постоянном токе ощутимый пороговый ток составляет 5-7 мА. пороговый неотпускающий 50-70 мА, а пороговый фибрилляционный - 300 мА.
2. Напряжение прикосновения Uпр, которое, согласно ГОСТ 12.1.009-76, представляет напряжение между двумя точками цепи тока, которых одновременно касается человек.
Напряжение прикосновения, а также электрическое сопротивление тела человека существенно влияют на исход поражения, так как определяют значение тока, проходящего через тело человека, согласно закону Ома:
Uпр = Ih∙Rh
В аварийном режиме предельно допустимым напряжением является 20В (при длительности воздействия более 1 с.).
3. Сопротивление тела человека Rh. Оно определяется в основном сопротивлением кожи. Сопротивление Rh, колеблется у разных людей от 3 кОм до 100 кОм. Согласно ГОСТ 12.1.038-82, в нормальном режиме Rh принимается равным 6,7 кОм. В аварийном режиме при расчетах принимается обычно равным 1000 Ом.
4. Длительность воздействия t. Предельно допустимый ток, который может воздействовать на человека без особых последствий в интервале времени t = 0,2 − 1с, определяется согласно ГОСТ 12.1.038-82 из выражения: I ≈ 50/t, мА. Вероятность тяжелого исхода возрастает при I менее 0,2с, что связано с особенностями кардиоцикла. Поэтому время срабатывания быстродействующей защиты ориентируется на этот промежуток времени.
5. Путь тока через тело человека (петля тока). Наиболее опасна петля тока по пути рука-рука, так как проходит через жизненно важные органы, наименее - нога-нога.
6. Род тока. Постоянный ток менее опасен, чем переменный, что видно по значениям пороговых токов, но это справедливо для напряжений менее 250-ЗООВ. Выпрямленный ток из-за наличия гармоник опаснее постоянного тока от аккумулятора.
7. Частота тока f. Наиболее опасным является ток с частотой 20-100 Гц. При частотах меньше 20 или больше 100 Гц опасность поражения несколько уменьшается. Ток частотой более 500 кГц является неопасным с точки зрения электрического удара, но может вызвать ожоги. В принципе, можно считать, что опасность электрического тока в зависимости от частоты уменьшается обратно пропорционально .
8. Контакт в точках акупунктуры. На теле имеются особые точки (точки акупунктуры), куда подходят нервные окончания, в результате чего сопротивление в этих местах резко (на два порядка) снижается по сравнению с соседними участками. Поэтому подвод тока к точкам акупунктуры резко увеличивает вероятность неблагоприятного исхода.
9. Фактор внимания. Сосредоточенный, внимательный к опасности человек менее подвержен воздействию тока. Известно, что кровообращение центральной нервной системы под влиянием напряженного внимания усиливается. Это вызывает повышенное потребление кислорода, что, в свою очередь, приводит к увеличению числа электронов в процессах биохимических реакций обмена веществ. Усиленный поток электронов сложнее нарушить импульсом тока. Значит, биосистему автоматического регулирования при усиленном кровообращении нервной системы расстроить сложнее.
10. Индивидуальные свойства человека (состояние здоровья, масса и пол человека и др.).
11. Условия внешней среды. По Правилам устройства электроустановок (ПУЭ) выделяют 3 класса помещений по опасности поражения электрическим током:
1 − без повышенной
опасности (без признаков
2 − повышенной опасностью (температура воздуха более 35"С, относительная влажность более 75%, наличие в воздухе токопроводящей пыли, токопроводящий пол, возможность одновременного прикосновения к заземленному объекту и к корпусу электроустановки);
3 − особо опасные (влажность около 100%, химически активная среда в воздухе помещения, наличие двух и более признаков повышенной опасности).
12. Схема включения человека в цепь тока. Наиболее опасно двухфазное прикосновение, при котором человек касается проводов двух разных фаз (в трехфазной сети), и исход поражения (часто смертельный при напряжении 380В) не зависит от режима нейтрали сети.
Наименее опасно однофазное прикосновение к сети с изолированной нейтралью. Даже при токопроводящем основании человек теоретически избежит неблагоприятного исхода.
Причины поражения электрическим током:
− случайное прикосновение;
− появление напряжения на корпусе электрооборудования;
− появление напряжения
на отключенных токоведущих
− напряжение шага.
Основные нормативные документы:
Правила устройства электроустановок (ПУЭ);
Правила эксплуатации (ПЭ) электроустановок потребителей и Правила техники безопасности (ПТБ) при эксплуатации электроустановок потребителей;
ГОСТ 12.1.009-76 ССБТ. Электробезопасность. Термины и определения;
ГОСТ 12.1.019-79 (СТ СЭВ 4830-84) ССБТ. Электробезопасность. Общие требования и номенклатура видов защиты.
ГОСТ 12.1.030-81 ССБТ. Электробезопасность. Защитное заземление, зануление.
ГОСТ 12.1.038-82 ССБТ. Электробезопасность. Предельно допустимые значения напряжений прикосновения и токов.
ГОСТ 12.2.007.0-14-75 ССБТ. Изделия электротехнические. Общие требования безопасности;
ГОСТ 12.3.019-80 ССБТ. Испытания и измерения электрические;
ГОСТ 12.3.032-84 ССБТ. Работы электромонтажные;
ГОСТ 12.1.038-82 ССБТ. Электробезопасность. Предельно допустимые значения напряжений прикосновения и токов.
ГОСТ 12.4.124-83 ССБТ. Средства защиты от статического электричества. Общие технические требования.
Средства защиты.
При разработке средств защиты
от опасности поражения
− снижения опасности (изоляция; применение малых напряжений);
− ликвидации опасности (защитное отключение);
− блокировки (оградительные устройства);
− информации (сигнализация, знаки безопасности, плакаты);
− слабого звена (защитное заземление).
Средства коллективной защиты от электрического тока:
1. Защитное заземление.
2. Зануление.
3. Защитное отключение.
4. Применение малых напряжений.
5. Изоляция.
6. Оградительные устройства.
7. Сигнализация, блокировка, знаки безопасности, плакаты.
Кроме перечисленных СКЗ, применяются СИЗ (инструменты с изолированными рукоятками, коврики, токоизмерительные клещи и т.п.).
Защитное заземление − преднамеренное соединение с землей или ее эквивалентом металлических нетоковедущих частей оборудования, не находящихся под напряжением в обычных условиях, но которые могут оказаться над напряжением в результате повреждения изоляции электроустановки.
Принцип действия защитного заземления − снижение до безопасных значений напряжений прикосновения и шага, обусловленных "замыканием на корпус".
Область применения − трехфазные трехпроводные сети напряжением до 1000В с изолированной нейтралью и выше 1000В с любым режимом нейтрали. Принципиальная схема защитного заземления приведена на рис. 1.
а)
б)
Рис. 1. Принципиальная схема защитного заземления.
а) защитное заземление в сети с изолированной нейтралью до 1000В;
б) защитное заземление в сети с заземленной нейтралью выше 1000В.
1 - заземленное оборудование; 2 - заземлитель защитного заземления; 3 - заземлитель рабочего заземления;
rз, rо, - сопротивления соответственно защитного и рабочего заземлений.
Заземление или зануление электроустановок является обязательным в помещениях без повышенной опасности поражения током при переменном напряжении 380В и выше, постоянном напряжении − 440В и выше. В помещениях с повышенной опасностью и особо опасных необходимо заземлять или занулять установки, начиная с 42В переменного и 110В постоянного напряжения.
Во взрывоопасных помещениях заземление или зануление установок обязательно независимо от напряжения сети.
Сопротивление заземления электроустановок должно быть не более 8; 4; 2 Ом для трехфазной сети с заземленной нейтралью напряжением 220; 380; 660В соответственно. В стационарных сетях до 1000В с изолированной нейтралью сопротивление заземления должно быть не более 10 Ом (в сочетании с контролем сопротивления изоляции).
Занулением называется присоединение к неоднократно заземленному нулевому проводу питающей сети корпусов и других конструктивных металлических частей электрооборудования, которые нормально не находятся под напряжением, но вследствие повреждения изоляции могут оказаться под напряжением.
Принципиальная схема
Рис. 2. Принципиальная схема защитного зануления.
1 – корпус; 2 − аппараты для защиты от токов короткого замыкания (предохранители);
Ro − сопротивление заземления нейтрали сети; Rn − сопротивление повторного заземления нулевого провода; I − ток короткого замыкания.
Принцип действия зануления − превращение пробоя на корпус в короткое однофазное замыкание (т.е. замыкание между фазным и нулевым проводами) с целью создания большого тока, способного обеспечить срабатывание защиты и тем самым отключить автоматически поврежденную установку из сети.
Область применения − трехфазные четырехпроводные сети напряжением до 1000В с глухозаземленной нейтралью.
Первая помощь при поражении электрическим током должна оказываться немедленно (в течение первой минуты). Необходимо определить, что произошло, освободить (при необходимости) пострадавшего от поражающего действия электрического тока; установить наличие дыхания, пульса, шока; организовать вызов скорой помощи; при необходимости, проводить реанимационные мероприятия: искусственное дыхание, непрямой массаж сердца.
Статическое электричество − совокупность явлений, связанных с возникновением, сохранением и релаксацией (ослаблением) свободного электрического заряда на поверхности и в объеме диэлектрических веществ, материалов, изделий или на изолированных проводниках. Протекание различных технологических процессов, таких, как измельчение, распыление, фильтрование и другие, сопровождается электризацией материалов и оборудования, причем возникающий на них электрический потенциал достигает значений тысяч и десятка тысяч вольт.
Опасность воздействия статического электричества проявляется в искровых разрядах, которые могут явиться причиной воспламенения горючих веществ и взрывов, а также отрицательного воздействия на организм человека (слабые толчки, умеренный или сильный укол).
Статическое электричество может нарушать технологические процессы, создавать помехи в электронных приборах автоматики.
В производственных условиях накопление зарядов статического электричества происходит в следующих случаях:
1. При наливе
электризующихся жидкостей (
2. Во время
протекания жидкостей по
3. При выходе из сопел сжиженных или сжатых газов.
4. Во время
перевозки жидкостей в
5. При фильтрации через пористые перегородки или сетки.
Информация о работе Лекции по "Безопасности жизнедеятельности"