Мохандас Карамчанд Ганди

Автор работы: Пользователь скрыл имя, 17 Мая 2013 в 19:15, доклад

Описание работы

Известный как Махатма Ганди, — один из руководителей и идеолог национально-освободительного движения Индии. Его философия ненасилия Сатьяграха оказала влияние на национальные и международные движения сторонников мирных перемен.
Махатма Ганди отвергал насилие в любой форме.

Файлы: 1 файл

Мохандас Карамчанд Ганди.docx

— 116.73 Кб (Скачать файл)

 

Итак, если молекулы «предоставлены самим себе», если на молекулы не действуют мешающие их тепловому движению силы, то наиболее вероятным является беспорядочное распределение молекул.

 

Значит ли это, что самопроизвольные отклонения от беспорядка невероятны? Следует ли отсюда, что существует «стремление» к беспорядку? Да, следует.

 

Чтобы это стало ясным, поставим два вопроса. Первый из них таков: можно ли заморозить воду нагреванием? Конечно, нельзя, ответит любой из нас. Но почему? На первый взгляд вопрос кажется бессмысленным, однако только на первый взгляд. Ведь в каждом частном явлении мы ищем проявления общих законов природы, которым подчиняется окружающий нас материальный мир. Какой же закон природы «запрещает» самопроизвольное замораживание воды нагреванием? Может быть, закон сохранения энергии? Нет, этот закон может быть соблюден в интересующем нас бессмысленном процессе. Можно представить себе сосуд с водой, поставленный на массивную электрическую плиту, раскаленную до 300°С, и далее такое явление: плита раскаляется до 400°С, а вода в сосуде замерзает. В этом невозможном событии закон сохранения энергии не нарушен. Вода отдала тепло, а плита его получила. Поэтому объяснение невозможности названного явления надо искать в чем-то другом.

 

Задумаемся о молекулярном механизме передачи тепла. Известно, что в более нагретом теле молекулы движутся более быстро, чем в холодном. В соприкосновении тел с различной температурой чаще всего более медленные молекулы одного тела будут сталкиваться с более быстрыми молекулами другого тела. И вот оказывается, что через некоторое время результатом этих столкновений будет выравнивание средних скоростей молекул в соприкасающихся телах.

 

Опишем теперь молекулярное состояние этих соприкасающихся тел до и после выравнивания температур. Если в ящике лежат белые и черные шары, то беспорядочным будет такое распределение шаров, при котором вероятности вынуть белый или черный шар будут одинаковыми в любом месте ящика. Но мы уже знаем, что порядок и беспорядок могут осуществляться в отношении любого признака (например, магнитный порядок). Поэтому можно говорить и о порядке или беспорядке в значениях средних скоростей молекул. Беспорядочным является такое состояние, когда средние скорости молекул во всех точках пространства одинаковы. Таким образом, два находящихся в соприкосновении нагретых до разных температур тела с молекулярной точки зрения не представляют собой беспорядочного распределения частиц.

 

Мы приходим к выводу, что переход тепла от тела менее нагретого к телу более нагретому это переход от беспорядка к порядку. Но ведь беспорядочное состояние обладает наибольшей вероятностью. Значит, переход от беспорядка к порядку будет переходом от более вероятного к менее вероятному состоянию. Поэтому обычно такие процессы не наблюдаются. Второй вопрос будет таким же ясным, как и первый. Может ли маховое колесо раскрутиться «само по себе»? Конечно, нет. Чтобы завертеть колесо, нужна энергия. Представим, что колесо раскручивается, а в помещении, где находится «машина», падает температура. Ведь в этом случае механическая энергия вращающегося колеса берется не из ничего, а возникает за счет тепла. С точки зрения закона сохранения энергии и в этом явлении нет ничего бессмысленного.

 

Невозможность получения механической энергии за счет охлаждения среды вовсе не очевидна. Очень много изобретателей потратили время на попытки создания двигателя, работающего за счет охлаждения воды океанов. Однако нельзя построить такой двигатель. Нельзя за счет одного лишь охлаждения внешней среды заставить вращаться маховые колеса, привести в движение станки. Нельзя потому, что процесс самопроизвольного перехода тепла в механическую энергию невероятен. Понизить температуру среды это значит уменьшить энергию хаотического, беспорядочного движения молекул среды в энергию вполне упорядоченного движения атомов металла. Опять переход беспорядочного расположения молекул в упорядоченное оказывается невозможен. Итак, тепловое движение молекул направлено к беспорядку в расположении молекул, к беспорядку в направлении их скоростей.

 

В ящик насыпан мешок черных зернышек, а затем мешок белых зернышек. Возьмем лопату и начнем перемешивать зерна. Зерна будут перемешиваться, так же как молекулы тепловым движением. Вскоре зерна перемешаются, и, взяв наудачу горсть зерен, мы найдем в них примерно равные количества белых и черных. Порядок перешел в беспорядок. Сколько бы ни продолжалось размешивание, мы никогда не добьемся рассортировки зерен. Напротив, более или менее равномерное распределение зерен будет устойчивым состоянием. В отношении молекул такое состояние называется тепловым равновесием. В состоянии теплового равновесия скорости молекул газа распределены в соответствии с законом Максвелла и не имеют преимущественных направлений.

 

Стремление к беспорядку в расположении молекул объясняет многие явления, рассматриваемые выше, и прежде всего процессы диффузии. Что заставляет молекулы куска сахара, брошенного в стакан чая, двигаться вверх (а ведь молекулы сахара тяжелее молекулы воды) и равномерно перемешиваться с водой? Стремление к беспорядку. Что заставляет атомы цинка проникать в медь, когда пластинки этих двух металлов прижаты друг к другу? Стремление к беспорядку.

 

Не учитывая этого закона природы, мы не сможем ничего понять в явлениях фазовых переходов, в явлениях устойчивости фаз. Если молекулы вещества могут создать несколько расположений, то при прочих равных условиях имеет преимущество то расположение, которое дает возможность «развернуться» тепловому движению, помогает осуществить стремление к наиболее свободному, т. е. наиболее беспорядочному движению.

 

1.3.3 Борьба порядка и беспорядка

 

Как мы знаем, наиболее вероятным распределением молекул является беспорядок как в отношении расположения, так и в отношении направления скоростей. Что же касается величин скоростей, то здесь беспорядок выражается в предельной свободе движения. В случае газа эта предельная свобода движения приводит к распределению Максвелла. Но если в игру вмешиваются силы, действующие на частицы, то картина меняется. Действие сил направлено к установлению порядка. Если атомы (молекулы) находятся в тепловом движении и на них действуют силы, то наиболее вероятным распределением частиц уже не явится беспорядок, а распределение скоростей уже не будет максвелловским.

 

Борьбу порядка с беспорядком можно проследить на множестве примеров. Почти весь материал, изложенный ранее, иллюстрирует этот важный закон природы своеобразное уравновешивание двух стремлений: к порядку, т. е. к наиболее вероятному распределению, характерному для частиц, находящихся в тепловом движении.

 

Очень простым и характерным примером является распределение молекул в вертикальном столбе воздуха. Если бы теплового движения не было, то стремление к равновесию заставило бы все молекулы прижаться к земной поверхности.

 

А что есть на самом деле? Хорошо известно, что давление, а значит, и плотность воздуха уменьшаются с высотой. На протяжении 5,6 км плотность воздуха падает вдвое. Этот яркий пример показывает компромисс между обоими стремлениями. При наличии силы тяжести наиболее вероятным уже не является полный беспорядок, т. е. совершенная однородность плотности. В одних условиях газообразное (беспорядочное) распределение частиц встретится чаще всего, в других случаях образование ближнего порядка обладает преимуществом, и в третьих создается дальний порядок в расположении частиц.

 

При высоких температурах молекулы обладают большими скоростями. Силы взаимодействия между молекулами не оказывают при этом заметного влияния на взаимное расположение молекул. По мере понижения температуры средние скорости молекул падают и наступают, наконец, такой момент, когда силы сцепления начинают собирать атомы (молекулы) в капли. Наиболее вероятным при новых условиях оказывается ближний порядок во взаимном расположении частиц. При дальнейшем понижении температуры может наступить такой момент, когда колебания атомов настолько замедляться, что атомы образуют правильную решетку. Этим условиям соответствует дальний порядок в расположении частиц.

 

Каким образом могут две различные фазы вещества находиться в равновесии друг с другом?

 

Рассмотрим, например, кристалл и насыщенный пар. Состояние кристалла дальний порядок устойчиво. Для отрыва частицы от кристалла и перевода ее в парообразное состояние требуется работа. Казалось бы, состояние пара менее устойчиво. Тем не менее обе фазы находятся в равновесии. Чем же компенсируется меньшая устойчивость парообразного состояния? Стремление к порядку находит свое осуществление в кристаллическом расположении атомов. Однако стремление к беспорядку в кристалле подавлено. Атомам тесно, движения их затруднены. В паре на каждую частицу много больший объем. Тепловому движению есть где развернуться оно становится уже «предельно» свободным. Стремление к беспорядку удовлетворено.

 

Можно сказать, что равновесие между кристаллом и паром требует, чтобы «сумма» порядка и беспорядка была одинаковой у обоих фаз. Насколько больше порядка в кристалле, настолько больше должно быть беспорядка в его насыщенном паре. Известно, что насыщенный пар имеет разные величины давления при разных температурах. Чем ниже температура, тем меньше давление, а значит, и плотность насыщенного пара. Раз плотность меньше, значит, объем, приходящийся на молекулу, больше, а следовательно, больше и степень свободы, а значит, и беспорядка в паре. Так как кристалл мало сжимается при понижении температуры, то объем, приходящийся на атом, а значит, и степень беспорядка у него мало меняются. Зато степень устойчивости (стремление к порядку) у кристалла возрастает: чем ниже температура, тем большая работа нужна, чтобы оторвать молекулу (или атом) от кристалла. Изменяя условия равновесия насыщенного пара с кристаллом, мы находим разные компромиссы между порядком и беспорядком. Больший беспорядок в одной фазе природа уравновешивает большим порядком в другой. Нарушая условия равновесия, например, повышая температуру при одном и том же давлении, мы заставляем кристалл возгоняться. Стремление к беспорядку берет верх. Тепловое движение становится столь интенсивным, что выигрыш в устойчивости кристалла не может ему противостоять. А как обстоит дело при фазовых превращениях в твердом состоянии? В тех случаях, когда мы сталкиваемся с фазовыми превращениями, дело будет обстоять следующим образом. У одной фазы амплитуда уже, но зато более глубокие.

 

Условие равновесия таких двух фаз наступает тогда, когда возможности теплового движения (стремление к беспорядку) в одной из них компенсируются большей устойчивостью (стремление к порядку) в другой. Если температура растет, то беспорядок берет верх. Если температура падает, то стремление к устойчивости (к порядку) ведет к соответствующему фазовому переходу.

 

Заключение

 

Данная контрольная работа посвящена вопросам порядка и беспорядка, их соотношению в природе.

 

Проблемы порядка и беспорядка являются неотъемлемой частью современного естествознания и занимают далеко не последнее место в естественных науках. Рассмотрением этих вопросов занимается молекулярная физика, химия, математика и многие другие дисциплины.

 

В конечном итоге по данной работе можно сделать следующие выводы.

 

Закон возрастания энтропии применим лишь к достаточно большому собранию частиц, а для отдельных молекул его просто невозможно сформулировать.

 

Вопросы связанные с энтропией в сложных системах и закон стремления таких систем к состоянию равновесия, дают возможность объективно воспринимать протекающие в природе процессы и определять возможности вмешательства в эти процессы.

 

Закон возрастания энтропии является частью второго начала термодинамики, которым обычно называется полученное опытным путем утверждение о невозможности построения вечного двигателя второго рода. В закрытой системе расположение молекул определяется случаем и наиболее вероятным явится распределение молекул с полной изотропией и с макроскопически равномерной плотностью, т. е. идеально беспорядочное распределение. При тех внешних условиях, в которых находится газ, наиболее вероятным является беспорядок, т. е. такое состояние, которое может быть осуществлено максимальным числом способов.

 

Также в третьей части работы мы пришли к выводу, что переход тепла от тела менее нагретого к телу более нагретому это переход от беспорядка к порядку. При фазовых превращениях условие равновесия двух фаз наступает тогда, когда возможности теплового движения (стремление к беспорядку) в одной из них компенсируются большей устойчивостью (стремление к порядку) в другой. Если температура растет, то беспорядок берет верх. Если температура падает, то стремление к устойчивости (к порядку) ведет к соответствующему фазовому переходу.

 

Итак, мы закончили рассмотрение роли порядка и беспорядка в природе. В заключении хочется подчеркнуть, что законы вероятности, правила порядка и беспорядка являются важным элементом этого общего научного подхода, охватывающего физические, биологические и социальные события.

 

Итак, главный вывод, который можно сделать из всего выше сказанного, это то, что и природные системы следует рассматривать как сложные целостные системные образования, находящиеся в неразрывной связи с обществом и техническими объектами.

 

И природа, и система «природа-общество» - сложные целостные образования, и изменение одного из компонентов обязательно вызывает цепь изменений других компонентов. И такие взаимосвязанные последовательные изменения могут привести к значительному изменению окружающей среды.

 

Список литературы


Информация о работе Мохандас Карамчанд Ганди