Применение стекломатериалов в авиастроении

Автор работы: Пользователь скрыл имя, 26 Мая 2013 в 07:56, реферат

Описание работы

Получение, разработка новых материалов, способы их обработки являются основой современного производства и во многом определяются уровнем своего развития научно-технический и экономический потенциал страны.
Материалы с малой плотностью (легкие материалы) широко используются в авиации, ракетной и космической технике, а также в автомобилестроении, судостроении и других отраслях промышленности. Применение легких материалов дает возможность снизить массу, увеличить грузоподъемность летательных аппаратов без снижения скорости и дальности полета, повысить скорость движения автомобилей, судов, железнодорожного транспорта.

Содержание работы

Введение.
4
1.
Свойства стекла.
6
2.
Основы современной технологии получения стекла.
Состав, технология получения стекла.
11
3.
Типы стекла.
18
4.
Применение стекломатериалов в авиастроении.
24

Список литературы.

Файлы: 1 файл

Реферет,стекло.doc

— 799.00 Кб (Скачать файл)

Химический состав стекла во многом определяет его термостойкость: окислы, повышающие коэффициент термического расширения стекла, понижают его термостойкость, и наоборот.

Оптические свойства.

Под оптическими свойствами стекла подразумевают его светопрозрачность, светопоглощение, отражение и преломление света.

При падении пучка  света на поверхность прозрачного  тела часть света отражается, а часть проходит через него, преломляясь. Но если сложить свет, отраженный и преломленный, то не получится количества света, которое падает на стекло, — небольшая часть света поглощается стеклом.. Поглощение света обусловлено присутствием в стекле соединений-красителей, вызывающих избирательное поглощение, т. е. поглощение лучей только с определенной длиной волны. Так, из-за наличия в стекле, в том числе и оконном, соединений железа оно имеет зеленоватый оттенок.

Светопоглощение понижает общую светопрозрачность стекла (светопрозрачность оконного стекла составляет примерно 88%), поэтому для получения стекол с высокой степенью прозрачности необходимо свести к минимуму содержание нежелательных примесей в сырьевых материалах.

Химическая стойкость.

Химической стойкостью называется способность стекла противостоять разрушающему действию воды, растворов солей, влаги и газов атмосферы.

Стойкость стекла к действию щелочей называется щелочестойкостью, к действию кислот — кислотостойкостью.

Химическую стойкость стекла определяют по разности массы образца до и после испытания. Для испытания приготовляют порошок из стекла или массивный образец стекла, взвешивают его и затем кипятят в агрессивной среде, чаще всего в растворах NaОН, Na2СОз, НС1 и дистиллированной воде. После опыта образец высушивают и взвешивают на аналитических весах. "Потеря в массе стекла и характеризует его химическую стойкость.

Химическую стойкость  определяют также титрованием кислотой (НС1) раствора, в котором было обработано испытуемое стекло. В этом случае химическая стойкость характеризуется количеством кислоты, затраченной на титрование: чем больше израсходовано кислоты на титрование, тем меньше химическая стойкость стекла.

Щелочестойкость оконного стекла определяют по потере массы  с 1 дм2 пластины стекла при обработке ее в кипящем однонормальном растворе углекислого натрия в течение 3 ч. Потеря при этом не должна превышать 38 мг с 1 дм2 поверхности.

В зависимости от способности  стекол противостоять разрушающему действию воды и других агрессивных растворов их подразделяют на гидролитические классы, которые определяются количеством НС1, пошедшим на титрование.

Гидролитические классы (расход НС1, мл):

                 I — не изменяемые водой стекла                0—0,32

                II — устойчивые стекла                                 0,32—0,65

               III — твердые аппаратные стекла                  0,65—2,8

               IV — мягкие аппаратные стекла                    2,8—6,5

                V — неудовлетворительные стекла              6,5 и больше

Наибольшую химическую стойкость имеет кварцевое стекло, оно относится к I гидролитическому классу, химико-лабораторные стекла, как правило, ко II. Большинство промышленных стекол принадлежит к самому обширному — III гидролитическому классу, а наиболее устойчивые из них — оконное и полированное — к первой половине этого класса.                  

Химическая стойкость  силикатных стекол в основном зависит  от химического состава и определяется содержанием в них кремнезема. SiO2 значительно увеличивает химическую стойкость стекла, Щелочные же окислы, как правило, понижают ее. Другие компоненты стекла ведут себя по-разному по отношению к различным реагентам. Поэтому при подборе химических составов стекол руководствуются тем, в каких условиях они будут использоваться.

 

 

2.Основы современной  технологии получения стекла. Состав, технология получения стекла.

 

Сырьем для получения стекла являются природные и искусственно получаемые вещества, которые подразделяются на следующие группы:

1. Стеклообразующие вещества – окислы кремния, бора, фосфора, германия, мышьяка. Эти окислы участвуют в образовании структуры стекла.

2. Модифицирующие вещества  – окислы натрия, лития, кальция,  магния, бария и др., расширяющие  в сочетании со стеклообразующими  диапазон физико-химических свойств стекол в какую-либо сторону.

3. Промежуточные вещества  – окислы алюминия, свинца, железа, титана, бериллия. Сами они не  образовывают стабильной стекловидной  структуры, но могут заменять часть стеклообразующих окислов в структурном каркасе стекла.

4. Красители – окислы  и соли металлов, образующие в  стекле коллоидные растворы и  обеспечивающие различный цвет  стеклу. Например, в красный цвет стекло окрашивают Cu2O, AuCl, в синий – CoO, CuSО4, в зеленый – Cr2O3, FeO и др.

5. Глушители – вещества, делающие стекло матовым, молочным. К этой группе относятся окислы и сернистые соединения мышьяка, олова, сурьмы и др.

6. Обесцвечиватели –  вещества, добавление которых в  стекломассу, устраняют желтую  или другую слабую окраску. Например, введение MnО2 удаляет зеленую окраску, полученную от FeO. 

7. Осветители – вещества, удаляющие из стекломассы газовые  включения. К ним относятся NaNO3, As2O3, NH4Cl и др.

Вредной примесью в сырье  являются окислы Fe, придающие стеклу зеленый оттенок.

Компоненты шихты промывают, сушат, измельчают, просеивают. При промывке удаляются глинистые частицы и органические примеси. измельчение сырья производится в щековых, а затем в молотковых дробилках или в бегунах. Сырье сушат в барабанных сушилках.

Просеянные сырьевые материалы смешиваются в определенных соотношениях, получается шихта, которая направляется на варку в стекловаренную печь.

Стекло варится путем выдерживания смеси сырьевых материалов при высоких температурах (от 1200 до 1600° С) в течение продолжительного времени — от 12 до 96 ч. Такой режим обеспечивает протекание необходимых химических реакций, в результате чего сырьевая смесь приобретает свойства стекла.

Процесс осуществляется в ваннах или в горшковых печах. Ванна – непрерывно действующая печь, конструктивно аналогична мартеновской печи. Она имеет ванну длиной около 30 метров, над которой в пламенном пространстве сжигается топливно-генераторный или природный газ. Топливо и воздух, необходимый для горения, предварительно нагреваются в регенераторах, а затем подаются через форсунки в пламенное пространство печи. Варка стекла – сложный физико-химический процесс, состоящий из следующих стадий:

1. Удаление гигроскопической  и кристаллизационной влаги и  выгорание органических соединений  при температурах ниже 500 ºС.

2. Силикатообразование,  заканчивающееся при 900 – 1000 ºС; шихта при этом превращается  в спекшуюся массу, состоящую  из силикатов Ca, Na, Mg и других металлов и свободного кремнезема.

3. Стеклообразование  происходит при температурах 1000 – 1200 ºС. Масса плавится и происходит взаимное растворение кварца и силикатов в щелочном силикатном расплаве. К концу этой стадии образуется прозрачная жидкая стекломасса, но еще не однородная по химическому составу и содержащая растворенные газы.

4. Дегазация и гомогенизация происходит при 1450 – 1500 ºС. Вязкость стекломассы уменьшается, из нее выделяются пузырьки газа. Для гомогенизации, т.е. полной однородности, стекломассу выдерживают при указанных температурах в течении нескольких часов.

5. Охлаждение стекломассы (студка) заключается в постепенном повышении вязкости расплава до пределов, допускающих формование изделий. В этот период температура стекломассы снижается на 200 – 300 ºС.

Горшковые печи по устройству сходны с ванными печами, но варка  стекломассы в них производится в горшках, установленных в ванне. Такие печи применяются для варки хрустального стекла и стекол особого назначения.

         В древние времена варка производилась  в глиняных горшочках глубиной и диаметром 5-7 см. В настоящее время применяются шамотные горшки гораздо больших размеров, вмещающие от 200 до 1400 кг шихты, для производства оптического, художественного и других видов стекла специального состава. В одной печи могут выдерживаться от 6 до 20 горшков. Большие массы стекла варятся в ванных печах непрерывного действия. Постоянный уровень расплавленного стекла в ванне поддерживается путем непрерывной подачи шихты на одном из концов установки и извлечения готового продукта с той же скоростью из другого конца; в таком режиме некоторые стекловаренные печи работали в течение пяти лет, прежде чем возникала необходимость в ремонте. Крупные печи, иногда вмещающие несколько сот тонн расплавленного стекла, приспосабливаются к интенсивному механическому производству. Как горшковые, так и ванные печи обычно нагреваются сжиганием природного газа или мазута.

 

Рис. 1. Ванная стекловаренная печь:

1 – бассейн; 2 – загрузочный  карман; 3 – здание цеха; 4 – главный  свод; 1 – бассейн; 2 – загрузочный  карман; 3 – здание цеха; 4 – главный  свод; 5 – колонны обвязки печи; 6 – машина вертикального вытягивания; 7 – отломщик рамного типа; 8 – роликовый конвейер; 9 – горелки; 10 – регенераторы; 11 – воздушный шибер; 12 – боров для отвода отходящих газов; 13 – котёл – утилизатор; 14 – дымовая труба.

            Ванная стекловаренная печь имеет варочный и выработочный бассейн, соединенные между собой по стекломассе протоком. Для загрузки шихты и стеклобоя печь оборудована двумя загрузочными карманами, расположенными по ее боковым сторонам.

            Варочный бассейн печи отапливается газообразным или жидким топливом. Для отопления газообразным топливом варочного бассейна, печь оборудована шестью горелками, расположенными с торцевой стены ванной печи, противоположной ее выработочной части.

            Удаление дымовых газов из стекловаренной печи осуществляется через систему дымовых каналов, оснащенных дымовоздушными клапанами, трубой и дымососом.

           Стекловаренная печь проточная. Производительность печи-70 тонн в сутки.

 

 

 

 

            

 Технология получения стекла состоит из двух производственных циклов.        

Цикл  технологии стекломассы включает операции:

•  подготовки сырых материалов;

•  смешивания их в определённых соотношениях, в соответствии с заданным химическим составом стекла в однородную шихту;

•  варки шихты в стекловаренных печах для получения однородной жидкой стекломассы.         

Цикл технологии получения стеклянных изделий складывается из операций:

•  доведения стекломассы до температуры (и вязкости);

•  формования изделий;

• постеленного охлаждения изделий с целью ликвидации возникающих в процессе формования напряжений;

• термической, механической или химической (в отдельности либо во взаимном сочетании) обработки отформованных изделий для придания им заданных свойств.         

Сырые - кремнезём, являющийся главной частью стекла, вводится в виде молотого кварца. Пригодность песка для стекловарения определяется содержанием в нём примесей и зерновым составом. Вредными примесями являются прежде всего соединение железа и хрома, придающие желтовато-зелёный зеленый цвета. Размер зёрен песка примерно 0,2-0,5 мм.

Окись алюминия, применяемая в производстве промышленных стекол, вводится с глиной, каолином, гидратом окиси алюминия.

Окись натрия вводится с одной кальцинированной содой.

Окись калия вводится в виде солей; применяется главным образом в производство посуды, цветных, оптических и некоторых технических стекол.

Окись лития используется при выработке  опаловых и некоторых специальных стекол.

Окись кальция вводится преимущественно  в виде мела.

Окись бария используется при производстве оптических стекол и хрусталя.

Окись цинка применяется в производство оптических, химико-лабораторных стекол.

В стекловарении используются материалы, содержащие одновременно горные породы, доменный шлак, стеклянный бой и др.      

К вспомогательным  сырым  материалам относятся осветлители. В качество осветлителей, способствующих удалению из стекла пузырей, применяют в небольших количествах сульфаты натрия и аммония, хлористый натрий, и др. Некоторые из этих веществ одновременно являются обесцвечивателями.

В качестве красителей применяют соединения кобальта, никеля, железа, хрома, марганца, селена, меди, урана, кадмия, серу, хлорное золото и др.

Белые, мало прозрачные стекла  молочные (наиболее заглушенные), опаловые применяются различные фосфаты, соединения сурьмы, олова и др.       

Стекловарение ведётся при температурах 1400°-1600°. В нём различают три стадии.        

Первая стадия - варка, когда происходит химическое взаимодействие и образование вязкой массы. Варка стекла производится в стекловаренных печах. Выбор того или иного типа печи обусловливается видом применяемого топлива, ассортиментом вырабатываемых изделий, размерами производства и прочее. Управление современной стекловаренной печью строго контролируется и в значительной мере автоматизировано. Контроль доведён до высокой степени точности. Автоматически регулируются: давление, соотношение газообразного или жидкого топлива и воздуха; количество подаваемого в печь топлива; уровень стекломассы в ванне и другие параметры.        

Информация о работе Применение стекломатериалов в авиастроении