Основы научно - исследовательской деятельности и перспективы развития теплоэнергетической отрасли

Автор работы: Пользователь скрыл имя, 05 Декабря 2012 в 07:36, курс лекций

Описание работы

Трудно назвать отрасль народного хозяйства, в которой не применялась бы тепловая энергия. Обеспечение нормальных микроклиматических условий в помещениях жилых, общественных зданий и зданий промышленного назначения, обеспечение нормального хода технологических процессов в промышленности, обеспечение чистоты атмосферы в помещениях и на рабочих местах — далеко не полный перечень сторон разнообразной деятельности и жизни человека, требующих применения тепловой энергии. Поэтому так остро поставлены вопросы развития техники теплогазоснабжения и вентиляции.

Содержание работы

ВВЕДЕНИЕ………………………………………………………………...5
1. Логистика систем теплогазоснабжения и вентиляции…………………………………………………………….6
2. Проблематика систем теплогазоснабжения и вентиляции…………………………………………………………...13
2.1 Теплопотери в зданиях и сооружениях……………………………..13
2.1.1 Теплопотери через ограждающие конструкции………………….14
2.1.2 Теплопотери через оконные проемы……………………………...21
2.1.3 Теплопотери в системах вентиляции……………………………..26
2.2 Теплопотери в тепловых сетях ……………………………………...27
3 Пути решения проблем теплогазоснабжения и вентиляции…………………………………………………………..29
3.1 Теплозащита зданий и сооружений…………………………………29
3.1.1 Теплоизоляция внешних стен……………………………………..30
3.1.2 Теплоизоляция окон………………………………………………..33
3.1.3 Система вентиляции………………………………………………..38
3.2 Теплозащита тепловых сетей………………………………………...41
4 Энергоэффективность систем теплогазоснабжения и вентиляции………………………………………………………...46
4.1 Методика определения экономической целесообразности применения энергосберегающего мероприятия………………………..47
4.2 Экономия теплоты, воды и электроэнергии в системах водоснабжения жилых микрорайонов…………………………………..48
4.3 Эффективность изоляции стояков системы горячего водоснабжения……………………………………………………………49
4.4 Использование вторичных энергоресурсов для нагрева теплоносителей в системах отопления, вентиляции и кондиционирования воздуха……………………………………………..50
4.5 Сокращение энергопотребления…………………………………….51
4.6 Повышение энергоэффективности теплосетей…………………….51
5 Методология научных исследований………………….53
5.1 Цели и задачи НИР…………………………………………………...53
5.1.1 Организация НИРС…………………………………………………54
5.2 Формы НИР…………………………………………………………...55
5.3 Финансирование НИР………………………………………………..57
5.4 Внедрение и эффективность научных исследовани ……………..59
5.5 Этапы НИР……………………………………………………………62
5.6 Основные методы НИР………………………………………………68
5.6.1 Методы эмпирического исследования…………………………….68
5.6.2 Методы теоретического исследования……………………………73
6. Информационные технологии в теплогазоснабжении и вентиляции……………………….76
6.1 Основные этапы работы с информацией……………………………76
6.1.1 Определение цели и план работы………………………………….76
6.1.2 Сбор информации…………………………………………………..77
6.1.3 Обработка и систематизация информации………………………..79
6.1.4 Интерпретация информации……………………………………….81
6.1.5 Составление информационного отчета…………………………...82
6.2 Культура работы с информацией …………………………………...83
6.2.1 Критерии оценки источников информации………………………83
6.3 Представление и распространение информации…………………...85
6.3.1 Уровни представления информации………………………………87
6.3.2 Каналы распространения информации……………………87
7. Планирование эксперимента………………………………92
8. Обработка результатов эксперимента…………………98
8.1 Предварительная обработка………………………………………….99
8.2 Дисперсия параметра оптимизации………………………………..102
8.3 Проверка однородности дисперсий………………………………..103
8.4 Рандомизация………………………………………………………..105
9. Экология систем теплогазоснабжения и вентиляции………………………………………………………….106
9.1 Технологии в энергетике……………………………………………106
9.2 Защита от шума, инфразвука и вибраций………………………….110
9.2.1 Акустический расчет и методы снижения шума………………..110
9.3 Загрязнение водных ресурсов………………………………………111
9.4 Мероприятия по охране атмосферы………………………………..113
Библиографический список…………………………………………….115

Файлы: 1 файл

КОНСПЕКТ ЛЕКЦИЙ по основам НИР.doc

— 947.50 Кб (Скачать файл)

Эксперты считают, что  с помощью доступных в настоящее  время технологий в США возможно снижение потребление энергии наполовину. Оптимисты надеются, что Западная Европа и Япония, где использование энергии сейчас наиболее эффективно (на 20-30% выше, чем в США), могут повысить этот показатель еще в 2-4 раза в течение ближайших 20 лет (Медоуз и др., 1994).

В статистике, связанной с энергетикой и экологией, часто используется понятие «потребление энергии на единицу ВНП» (ВНП - валовой национальный продукт, за единицу ВНП обычно принимается 1 млн. долларов). Но снижение этого показателя нередко связано не столько с реальным изменением энергопотребления на единицу продукции, сколько со сдвигами в структуре национальной экономики, когда из страны постепенно перемещаются в другие страны энергоемкие производства, которые замещаются наукоемкими, более конкурентоспособными, и когда прирост ВНП происходит во все большей степени за счет роста сферы услуг. При этом в стране продолжается рост суммарного потребления энергии в абсолютных величинах и даже его рост на душу населения при сокращении потребления на единицу ВНП. Приведенные данные показывают именно такую ситуацию во многих развитых странах. В Западной и Центральной Европе незначительное снижение потребления энергии на душу населения в период с 1980 по 1988-й г. наблюдалось только в 7 странах (Бельгия, Болгария, Дания, Венгрия, Люксембург, Нидерланды, Польша), которые не определяют энергетической ситуации в регионе. В то же время снижение потребления энергии на единицу ВНП происходило практически во всех государствах континента (без учета бывших социалистических стран) за исключением Исландии и Португалии.

Таким образом, снижение потребления энергии на единицу  ВНП еще не означает уменьшения ее общего потребления в стране и  сокращения потребления на душу населения. Например, в Канаде с 1980 по 1988 г. общий  прирост потребления энергии составил 8,2%, прирост потребления на душу населения — 12,6%, а потребление на 1 млн. долл. ВНП сократилось на 6,1%. Рост ВНП в этот период составил в среднем 2,7% в год, а прирост населения - около 1% . Другой пример - Япония, где с 1977 по 1987-й г. прирост потребления энергии составил 7%, прироста на душу населения не было, а сокращение потребления на единицу ВНП составило 29%. Все это показывает, что даже при снижении потребления энергии на единицу ВНП нарастание давления на окружающую среду и экосистемы продолжается за счет абсолютного роста использования энергии.

Создание технологий, снижающих энергопотребление на единицу продукции, - безусловно, необходимое  направление действий, но оно не вносит практически никакого вклада в решение экологических проблем, если при этом растет общее энергопотребление. На примере Японии видно, что абсолютная величина прироста потребления энергии в стране при всех замечательных достижениях в разработке энергосберегающих технологий была необходимым и вынужденным шагом, так как население Японии с 1977 по 1987 г. росло со скоростью 0,93% в начале и 0,6% в конце этого периода. При этом за указанный период энергопотребление на душу населения не выросло. Таким образом, в энергетике существенную роль играет рост населения.

Второй предлагаемый путь - использование так называемых "экологически чистых" источников энергии, которые также называют "альтернативными" и "возобновляемыми". К этим источникам относятся следующие: энергия ветра (уже сейчас в ряде стран создаются поля ветровых установок – в Калифорнии и на севере Западной Европы действует 25 тыс. ветроустановок и спрос на ветровые турбины растет), получение энергии из биомассы путем использования биогаза, а для двигателей автомашин – метанола и этанола (Швеция, Бразилия, Китай и др. страны), геотермальная энергия (используется как прямо, так и для производства электроэнергии (в США, Исландии и других странах), получение энергии за счет океана – приливов, волнения и термического перепада температуры с глубиной, энергия рек, используемая уже с давних времен (но сейчас наблюдается переход от крупных гидроэлектростанций к микрогидроэлектростанциям), наконец, солнечная энергия (солнечные концентраторы, солнечные пруды, солнечные батареи и т.д.).

Хотя возобновляемые источники энергии называют "экологически чистыми", это, строго говоря, не соответствует действительности. Очевидно, что создание любой энергетической установки на основе возобновимых ресурсов требует материалов, затрат энергии и территории, а следовательно, экологических издержек. Некоторые установки для использования возобновимых источников энергии загрязняют окружающую среду, как например, ветровые турбины, которые создают мощное шумовое загрязнение. Эксплуатация и ремонт всех подобных установок, вывод их из эксплуатации после износа неизбежно приводят к образованию отходов и загрязнению окружающей среды. Но не это является самым важным. Если сейчас окружающая среда нарушена и идет распад современной биосферы, то любая дополнительная энергия, в том числе и за счет возобновляемых источников, только ускорит разрушение.

Можно представить такую  ситуацию, что все человечество перейдет к использованию только возобновимых источников энергии. Но и в этом случае суммарная мощность установок не должна превышать допустимого порога возмущения биосферы, который составляет величину порядка 1-2 ТВт. При превышении этого порога любая используемая в хозяйственной деятельности, самая "экологически чистая" энергия становится экологически опасной. Следовательно, до этого порога не существует разницы между использованием энергии ископаемого топлива и энергии возобновимых источников. Преимущество последних будет заключаться только в том, что они не будут создавать локального загрязнения окружающей среды. Но современные технологии позволяют так организовать сжигание ископаемого топлива, что оно не будет в существенных объемах выбрасывать вредные для здоровья человека и окружающей среды загрязнители, а парниковые газы до превышения порога возмущения биосферы биота сама будет выводить из окружающей среды, что она делала в прошлом веке, а ее сохранившаяся ненарушенной часть продолжает делать и в настоящее время.

Таким образом, не сомневаясь в полезности и необходимости  повышения эффективности использования  энергии, в развитии энергосберегающих  технологий, в переходе к использованию возобновимых источников энергии, нельзя видеть в этом в настоящее время путь выхода из экологического кризиса. Выход из него лежит в снижении мощности нашего хозяйства примерно на порядок.

 

9.2 Защита от  шума, инфразвука и вибраций

 

9.2.1 Акустический расчет и методы снижения шума

 

Необходимость проведения мероприятий по снижению шума в жилых  и общественных зданиях, на их территории при действии каких-либо источников шума определяется на основании измерений  соответствующих уровней (звукового давления, звука или эквивалентных уровней звука) и сравнении их с допустимыми по нормам. Для проектируемых объектов — на основании проведения акустического расчета, который включает в себя: выявление источников шума и определение их шумовых характеристик; выбор расчетных точек, для которых производится расчет и установление допустимых уровней звукового давления Lдоп для этих точек;

-определение ожидаемых  уровней звукового давления L в расчетных точках до осуществления мероприятий по снижению шума и требуемого снижения уровня звукового давления; выбор мероприятий для обеспечения требуемого - снижения уровней звукового давления; расчет и проектирование шумоглушащих, звукопоглощающих и звукоизолирующих конструкций (глушителей, экранов, звукопоглощающих облицовок, звукоизолирующих кожухов и т. п.).

Акустический расчет производится для всех нормируемых  среднегеометрических частот октавных полос - (63, 125, 250, 500, 1000, 2000, 4000, 8000 Гц). Проведение акустического расчета обязательно  при проектировании новых предприятий, сооружений, различных, установок.

Выявление источников шума и определение их шумовых  характеристик. Источники шума в окружающей: среде весьма разнообразны. В основном это средства-транспорта, технологическое и инженерное оборудование, газодинамические и энергетические установки.

Для выполнения акустического .расчета прежде всего необходимо знать шумовые характеристики машин,. основными из которых являются уровни звуковой мощности Lр в восьми октавных полосах частот, фактор направленности Ф или показатель направленности а=101$Ф. В соответствии с ГОСТ 12.1.024—81, ТОСТ 12.1.025 — 81 и другими эти характеристики указываются заводом-изготовителем в технической документации на стационарные машины и оборудование.

В ряде случаев шумовые характеристики могут быть рассчитаны или определены по справочнику.

В окружающую среду-шум, создаваемый при работе вентиляторов общепромышленного и специального назначения (например,. шахтных вентиляторов), попадает через воздухозаборные  или выбросные устройства (киоски, шахты и т. д.),, а иногда — через металлические стенки воздуховодов,., Общий уровень звуковой мощности Лр0бЩ вентилятора общепромышленного назначения определяется отдельно для всасывающей и нагнетательной сторон.

 

9.3 Загрязнение  водных ресурсов

 

Воды загрязняются естественными  продуктами, отходами, поглощающими кислород (дезоксигенезирующими агентами), суспензиями (взвесями), различными ядовитыми веществами, вызывающими эвтрофикацию водоемов (ускорение естественных процессов  старения водных систем) тепловыми горячими стоками, различными солями, нефтепродуктами, отходами предприятий органического синтеза, моющими средствами, радиоактивными отходами, химическими веществами, а также производственными и бытовыми сточными водами, ливневыми и сельскохозяйственными стоками, включающими стоки с сельскохозяйственных угодий, обрабатываемых пестицидами и минеральными удобрениями, стоки животноводческих и птицеводческих комплексов, ежегодный объем которых составляет около 1.3 млрд. м3.

На состояние водного бассейна существенно влияет энергетика. На ТЭС и АЭС производится около 96% всей потребляемой в мире энергии. Тепловые и атомные электростанции воздействуют на окружающую среду как путем выброса токсичных веществ, так и путем теплового загрязнения водоемов. Большое количество горячих и тепловых стоков дают предприятия химической и металлургической промышленности. Повышение температуры воды в водоемах увеличивает потребление кислорода, усиливает действие токсичных веществ, нарушает биологические процессы существования водных сообществ. Пропуск больших объемов воды через охлаждающие устройства губит живые организмы, в первую очередь планктон и мальков рыб.

Выполнение в процессе строительства буровзрывных работ, эксплуатация карьеров, углубление фарватеров рек, намыв грунта, добыча песка и гравия из русел рек и на побережьях морей, устройство свалок под отходы строительного производства, разрушение плодородного слоя почвы, вырубка растительности на территории застройки, прокладка дорог и коммуникаций, слив загрязнений со строительных площадок оказывает отрицательное воздействие на состояние водного бассейна.

Недостаточный технический  уровень эксплуатации строительной техники, отсутствие механизированной или автоматизированной заправки и  организованного сбора отработанных и заменяемых масел вызывают загрязнение почвы, снега и водных бассейнов горюче-смазочными материалами. Отсутствие подъездных путей и внутриплощадочных дорог с твердым покрытием приводит к водной эрозии, повышению стоимости строительства, к износу машин и механизмов, потерям стройматериалов. Транспортировка и хранение ряда строительных материалов, осуществляемые без соблюдения технических требований, нередко ведут к загрязнению почвы, дорог, строительных площадок и последующему загрязнению водоемов. Увеличение объемов применения к бетонам различных добавок (противоморозные, замедлители и ускорители схватывания, пластификаторы), полимерных смол, органических растворителей, лаков, синтетических красок и др. повысило отрицательное воздействие на окружающую среду, в том числе на состояние поверхностных и подземных вод.

Тепловое загрязнение  происходит при использовании воды в качестве охладителя. При повышении  температуры снижается содержание в воде кислорода, что ведет к  размножению анаэробных бактерий, выделению сероводорода, метана и других ядовитых веществ, отравляющих все живое. В результате тепловое загрязнение усиливает биологическое.

Загрязнение воды разрушают  железобетонные и металлические  конструкции, находящиеся в воде, усиливают коррозию трубопроводов и образование различного рода отложений в них. Особенно агрессивны кислые стоки, разъедающие металлическую арматуру. При охлаждении агрегатов загрязненной водой на охлаждаемых поверхностях образуются осадки.

От загрязнения воды общество несет материальный и моральный ущерб. Польские ученые подсчитали, что материальный ущерб, нанесенный национальной экономике использованием неочищенных вод в промышленности, составляет 6.2 млрд. злотых в год. При предварительной очистке сточных вод национальный доход Польши был бы на 2.8 млрд. злотых больше.

 

9.4 Мероприятия  по охране атмосферы

 

Выделяются следующие  группы мероприятий по охране воздушного бассейна: технологические, архитектурно-планировочные, санитарно-технические, инженерно-организационные.

На каждом предприятии и для каждого территориально-промышленного комплекса (ТПК) разрабатывается комплексный план мероприятий по охране атмосферного воздуха, который включает в себя мероприятия, обоснованные экологически и технико-экономически и являющиеся составной частью комплексного плана мероприятий по охране и рациональному использованию природных ресурсов на предприятии или в ТПК, а также общие мероприятия по охране воздушного бассейна.

 

Технологические мероприятия.

Технологические мероприятия  включают в себя:

1)создание безотходных  технологических процессов на  основе: разработки принципиально  новых технологий и технологических  средств, комплексного использования  сырья и утилизации отходов  производства, повышения эффективности  работы газопылеулавливающих установок, организации ТПК с замкнутой системой материального баланса вещества, включая отходы производства;

2) замену местных котелен  на централизованное тепло от  крупных ТЭЦ и ТЭС

3) замену топлива: предпочтительнее  топливо с меньшим количеством  продуктов сгорания (вместо угля и мазута – природный газ).

4) предварительную очистку  сырья и топлива от вредных  примесей, в частности снижение  содержания серы в топливе;

Информация о работе Основы научно - исследовательской деятельности и перспективы развития теплоэнергетической отрасли