Автор работы: Пользователь скрыл имя, 18 Октября 2013 в 03:29, курсовая работа
Исходные данные: полезная сила, передаваемая лентой транспортера
Р = 24 кН, скорость ленты V = 0,8 м/с, диаметр приводного барабана D = 320 мм, режим работы – средний нормальный, время работы передачи - tx = 10000 ч, коническая передача – с круговыми зубьями, цилиндрическая передача – с косыми зубьями, нагрузка реверсивная.
где Zн – коэффициент, учитывающий форму сопряженных поверхностей зубьев.
Zн =
где aw = at - угол профиля производящей рейки
at = arctg (tg a /cos b) = arctg (tg 20 / cos 14°4'11,52'' ) = 20°34'2,82''
Zε - коэффициент, учитывающий суммарную длину контактных линий. Для
для косозубых и шевронных передач
= 0,76
εa - коэффициент перекрытия. Для передач, выполненных без смещения,
1,7314
Определяем коэффициент Zε
Zε=
Определяют коэффициент нагрузки Кн = Кн a · Кн b · Кн v , где
Кнa - коэффициент, учитывающий распределение нагрузки между зубьями. Для прямозубых передач Кнa = 1, для косозубых и шевронных передач
Кн a = 1 + 2,1 · 10-6 · nст4 · V + 0,02 · (nст - 6) 1,35 =1,1
Кнv - коэффициент, учитывающий динамическую нагрузку в зацеплении (табл. 10), Кн v = 1,016
Кн = Кн a · Кн b · Кн v = 1,1 · 1,06 x 1,016= 1,1846
Вычислим контактное напряжение по формуле (9)
Найдем = 5,5 % (запас прочности)
Проверочный расчет зубьев на выносливость при изгибе выполняется по формулам:
sF3 = YF3 · Yb · (2000 · T11 · KF ) / bw3 · dw3 · mn ≤ sFр3, (10)
sF4 = sF3 · (bw3 · YF4 / bw4 · YF3 ) ≤ sFр4,
где yb - коэффициент, учитывающий наклон зуба;
Yb = 1 - b / 140° = 1 – 14,07/140 = 0,8995
YFj - коэффициент формы зуба;
YFj = 3,6 · (1-(0,07 / zjv)+ 71 / z2jv),
где Z jv – эквивалентное число зубьев, определяется по формуле:
Zjv = Z j / cos 3 b,
Z3v = Z 3 / cos 3 b = 18/cos3 14°4'11,52'' = 19,722
Z4v = Z 4 / cos 3 b = 79/ cos3 15°4'11,52'' = 86,558
YF3 = 4,2445
YF4 = 3,63
Коэффициент нагрузки КF определяем по формуле:
КF = КFa · КFb · КFv ,
где КFa для косозубых передач рассчитывают по формуле
КFa = [4 + (εa - 1) · (nст - 5)] / (4 · εa) = [4 + (1,7314 – 1)·(9-5)]/(4·1,7314)=4,422
КFb определяем по формуле
КFb = 1 + 1,5 · (Кнa - 1) = 1 + 1,5 · (1,063 – 1 ) = 1,0945
Кfv находим из выражения:
КFv = 1 + df · (Кнv - 1) / dн = 1,048
Находим КF :
К F = 1 · 1,0945 · 1,048=1,147
Определяем sFj по формуле (10)
Запас по прочности от 3 до 9 %
3.4. Определение
диаметров окружностей
Начальные окружности:
dw3 = (mn · z3 ) / cos b = 5 · 18 / cos 14°4'11,52'' = 92,7835 мм
dw4 = (mn · z4) / cos b = 5 · 77 / cos 14°4'11,52'' = 396,9072 мм
Окружность вершин зубьев:
da3 = d w3 + 2 · mn = 92,7835 + 2 · 5 = 102,7835 мм
da4 = d w4 + 2 · mn = 396,9072 + 2 · 5 = 406,9072
Окружность впадин зубьев:
d f3 = d w3 - 2,5 · mn= 92,7835 – 2,5 · 5 = мм
d f4 = d w4 - 2,5 · mn = 396,9072 – 2,5 · 5 =384,4072 мм
3.5. Определение
сил в цилиндрической
Окружная сила:
Ft3 = Ft4 = 2 · T 2 · 103 / a w3 = 2 · 955 · 103 / 92,7835 = 20 585 Н
Радиальная сила
Fr3 = Fа4 = Ft3 · tg a / cos b = 20 585 · tg 20° / cos 14°4'11,52'' = 7 725 Н
Осевая сила:
Fa3 = Far4 = Ft3 · tg b = 20 585 · tg 14°4'11,52'' = 5 160 H
4. РАСЧЕТ ВАЛОВ. ПОДБОР ПОДШИПНИКОВ
4.1. Предварительный расчет валов.
Редукторный вал представляет
собой ступенчатое
Диаметр выходного конца ведущего (быстроходного) вала обычно принимают близким к диаметру вала электродвигателя, что позволяет использовать стандартную муфту для соединения выходных концов валов. Ориентировочно определяют диаметр di выходного конца вала из расчета на чистое кручение по пониженным допускаемым напряжениям. Это позволяет учесть влияние изгиба на величину эквивалентных напряжений на концевых участках валов [1, с. 31)
di1 ³ 3Ö (16 · T i · 103) /p · [t]
где i - порядковый номер вала (1 - для быстроходного вала, 2 - для промежуточного вала, 3 - для тихоходного вала);
T i - крутящий момент на соответствующем валу, Н∙м
t - заниженное значение допускаемых касательных напряжений, МПа
(для сталей 40, 45 принимают [ t ] = 15…20 МПа)
4.1.1. БЫСТРОХОДНЫЙ ВАЛ
Диаметр выходного участка вала
45,8 мм
Полученное значение округляют до ближайшего из ряда Ra 40 по ГОСТ dL1 = 50 мм. Для удобства соединения вала редуктора с валом электро-двигателя стандартной муфтой соблюдают условие, чтобы диаметры соединяемых валов имели размеры, отличающиеся не более чем на 20% [1, с. 32), т.е. d L1’ = (0,8 – 1,2) · d, где d - диаметр вала электродвигателя, определяемый по каталогу, d =60 мм (по ряду Ra 40).
4.1.2. ПРОМЕЖУТОЧНЫЙ ВАЛ
Определяем диаметр опасного сечения под колесом по пониженным допускаемым касательным напряжениям [t] = 20 МПа,
62,42 мм
Принимаем ближайшее большее значение из стандартного ряда Ra 40
dLL2 =65 мм
4.1.3. ТИХОХОДНЫЙ ВАЛ
Диаметр выходного
конца вала находим при
101,87 мм
Принимаем d L 1 = 110 мм (ряд Ra 40)
4.2 Первый этап эскизной компоновки
Первый этап эскизной компоновки выполняется с целью определения расстояний между сечениями валов, в которых приложена нагрузка, и сечениями, контактирующими с опорами.
Эскизную компоновку
рекомендуется выполнять в
4.3 Подбор и проверка шпонок
Для соединения вала с деталями, передающими кручение, часто используют призматические шпонки.
Рассмотрим пример. Пусть нужно установить шпонку на промежуточном вале под коническим колесом. Выбираем призматическую шпонку по диаметру dL1 = 70 мм по ГОСТ 23360-78 (рис. 1) [5,с. 20]. Размеры шпонки: ширина b=20мм, высота h = 12 мм, глубина паза вала t1 = 7,5 мм, глубина паза втулки t2=5,8 мм. Длину шпонки Lшп назначают из стандартного ряда таким образом, чтобы она была на 5 - 10 мм меньше длины ступицы колеса Lст, Lшп = L ст - (5 - 10). Длину ступицы принимают [5, ñ.30] в зависимости от диаметра d вала под ступицей: для цилиндрической передачи Lст = (1-1,5) · d; для конической передачи Lст = (1-1,2) · d.
Длина шпонки Lшп’ = Lст - (5 - 10) = 75 – 12 = 63 . Выбираем Lшп = 63. Шпонка 20 х 12 х 63 по ГОСТ 23360 – 78.
Напряжение смятия узких граней шпонки не должно превышать допускаемого
[s]см = 100 МПа, т.е.
s см = 2 · Т · 10 3 / d · Lp · (h – t1) £ [s] см
где Т - крутящий момент, передаваемый валом, Нм; d - диаметр вала в месте установки шпонки (в нашем примере d = d L 2 = 70 мм; L р= Lшп - b = 70-20=50
sсм = 99,2 МПа £ [s] см
На промежучочном валу - шпонка 20x12x70 ГОСТ 23360-78.
4.4 Конструктивные размеры зубчатых колес.
Размеры элементов зубчатых колес определяем по рекомендациям, приведенным в работах [1,3 - 5].
4.5. Силы в зубчатых прердачах.
Для определения направлений
сил в зубчатых передачах и
угловых скоростей в данный момент
времени следует
4.6 Расчетные схемы валов.
Опорные реакции, эпюры изгибающих и крутящих моментов.
4.6.1 Быстроходный вал.
Определение расстояний между опорами.
Размер от dae1 до среднего диаметра шестерни
с1 = 0,5 · bw1 · cos s1 = 0,5 · 45 · cos 14° = 21,8 мм
Принимаем зазор между dae1 и торцом подшипника D1 = D + m, где m - расстояние от внутренней стенки корпуса до подшипника, m = 10 мм.
Рис. 2. Определение направления действующих сил.
Для подшипников быстроходного вала выбираем консистентную смазку вследствие значительной удаленности одного из подшипников от картера редуктора. Следовательно, этот подшипник не будет смазываться масляным туманом даже при высоких окружных скоростях. Поэтому рекомендуется на этом валу устанавливать мазеудерживающее кольцо и принимать
m = 10 мм.
D - расстояние между dae1 и внутренней стенкой корпуса;
L1= 44,95 мм – с компоновки
L = 100 – с компоновки
Подшипник 7212А d = 60 , D = 110, Т = 23,75, В = 22, L = 100
Точка приложения радиальной реакции в опорах расположена в средней плоскости подшипника и может быть определена по выражению
а = Тп /2 + е · (D + d) /6,
где Тп - ширина подшипника;
D - наружный диаметр подшипника;
d - диаметр вала под подшипником;
е - параметр осевого нагружения подшипника.
а = 20,375
Определяем размер Lп1.
Lп1 = L + 2 · (Тп - а1 ) = 89,63 мм
Определяем размер L1.
L1 = 45 мм
Определение составляющих опорных реакций и изгибающих моментов.
Рассмотрим плоскость YOZ. Составим уравнение равновесия суммы моментов относительно опор А и В вала:
Σ МAY = 0 Σ МBY = 0
Fr1 · (L1 + Ln1) - Fa1 · dm1 / 2 + RBy · Ln1 =0;
Fr1 · L1 - Fa1 · dm1 / 2 + RАy · Lп1 = 0;
Проверим правильность нахождения реакций RAY и RВY , для этого составим третье уравнение равновесия – сумму проекций всех сил на ось Y:
åY = 0; - RAY + RBY + Fr1 = -1739+209+1530=0
Построение эпюры изгибающих моментов.
Участок 1:
åМZ1 = 0; 0 · Z1 = МZ1
Участок 2:
åМZ2 = 0; RAY · Z2 = М2
0£ Z2 £ Ln1
Z2 = 0 МZ2 = 0.
Z2 = Ln1 åМZ2 = RAY · Ln1 = 1739 · 0,08963 = 156 H·м
Участок 3:
åМZ3 = 0; RAY · (Ln1 + Z3) = RBY · Z3 = МZ3
0£ Z3 £ L1
Z3 = 0 МZ3 = RAY · Ln1 = 1739 · 0,08963 = 156 H·м
Z3 = L1
åМZ3 = RAY
(Ln1 + L1) - RBY ·L1 =
1739(0,08963+0,045)-209·0,045=
Рассмотрим плоскость XOZ.
Σ МAX = 0 Σ МBX = 0
RBx x Ln1 – Ft1 · (Ln1 + L1) = 0
RBХ x Ln1 – Ft1 · L1= 0
RBХ = Ft1 · (1 + L1/ Ln1) = 6581,4·(1+45/89,63)=9885,6 H
RАХ = Ft1 · L1 / Lп1= 6581,4·45/89,63 = 3304,3 Н
åХ = 0 RВY - RАY - Ft1 = 7383-2007-5376 = 0
Участок 1:
åМZ1 = 0; 0 · Z1 = МZ1
Участок 2:
åМZ2 = 0; RAХ · Z2 = М2
0£ Z2 £ Ln1
Z2 = 0 МZ2 = 0.
Z2 = Ln1 åМZ2 = RAХ · Ln1 = 3304,3 · 0,08963 = 296 Н
Участок 3:
Информация о работе Расчет и проектирование коническо-цилиндрического редуктора