Теория эксплуатационных свойст автомобилей

Автор работы: Пользователь скрыл имя, 28 Мая 2013 в 19:20, реферат

Описание работы

Развитие в России автомобильной промышленности обусловило широкое применение автомобилей во всех отраслях народного хозяйства, строительства и обороны страны.
В современных условиях приобретает большое значение теоретическое изучение, связанное с практическими задачами дальнейшего развития, совершенствования и эффективной эксплуатации отечественной автомобильной техники.
К числу первых исследований законов движения автомобиля следует отнести работу знаменитого российского ученого Н.Е.Жуковского, впервые предложившего в 1917 г. обоснованное научное изложение движения автомобиля на повороте. Его исследования движения трехколесной тележки позволили установить основные явления, возникающие при качении жестко связанных между собой колес, имеющих различные диаметры. Эти исследования послужили началом дальнейших работ в области энергетических циркуляционных явлений многоприводных автомобилей.

Файлы: 1 файл

Теория эксплуатационных свойств автомобилей.doc

— 1.70 Мб (Скачать файл)

Целесообразно использовать торможение двигателем в сочетании с плавным торможением колесными тормозами при движении на спусках (в горных условиях) и на скользкой дороге, так как при этом тормозное усилие более равномерно распределяется между колесами, препятствуя их блокировки.

Время торможения за период изменения скоростей движения от момента начала торможения до его  окончания отыщется как:

                                   , или

                                   tmin = (v1 – v2).

Если торможение производится до полной остановки автомобиля (v2 = 0), то:

                                     tmin = .

При торможении нагрузка с  задних колес автомобиля перераспределяется на передние. Для того чтобы торможение происходило с максимальной эффективностью, тормозные силы должны распределяться по колесам пропорционально приходящимся на них весовым нагрузкам.

Эффект блокировки колес при  торможении.

Полное торможение колеса, когда оно перестает вращаться и перемещается только благодаря скольжению (юзом), принято называть блокировкой. При блокировке практически нарушается сцепление колеса с дорогой в направлении действия, как касательных, так и боковых сил.

Особенно опасна блокировка ведущих колес на скользкой дороге. В подобных условиях слабого сцепления не удается погасить торможением кинетическую энергию движения автомобиля, что обуславливает не только разворот машины, а придает ей вращательное движение.

Распределение тормозных  усилий между мостами автомобиля влияет на полноту использования им сцепных свойств. Полное использование сцепления с дорогой возможно при условии соблюдения соответствия между тормозными силами и нормальными реакциями дороги. В процессе торможения это соотношение меняется в зависимости от состояния дороги, конструкции автомобиля, интенсивности торможения и других факторов.

Полное использование сцепного веса автомобиля в этих условиях возможно только при условии, если тормозная сила в этом процессе будет изменяться автоматически и приводится в соответствие с изменением реакций дороги на колесо. С этой целью на современных автомобилях устанавливают регуляторы тормозных сил, которые изменяют соответствующим образом давление жидкости в системе привода тормозов, передних и задних колес.

В соответствии с международными требованиями регулирование тормозных сил осуществляется таким образом, чтобы передние колеса легковых автомобилей первыми достигали блокировки при значении коэффициента сцепления 0,15...0,17, а грузовых -–0,15…0,3.

Регуляторы тормозных  сил повышают тормозные свойства автомобиля, но в целях предотвращения заноса устанавливают еще и антиблокировочные устройства (АБС). Эти устройства создают оптимальный пульсирующий тормозной момент на колесах на пределе скольжения. Их применение исключает блокировку колес, повышая безопасность и эффективность тормозного процесса в условиях дорожных покрытий с низким коэффициентом сцепления.

 

Тормозной путь.

Наиболее часто применяют оценочный  показатель эффективности торможения – тормозной путь SТ.

Минимальный тормозной путь SТmin при максимальном замедлении определяют по условию равенства кинетической энергии торможения [0,5mп(v12 - v22)] и работы тормозных сил (Рт мах SТmin). Для горизонтального участка пути соблюдается равенство:

                Рт мах SТmin = 0,5mп(v12 - v22) ,

 где mп = β G/g – приведенная масса автомобиля.

Откуда:

                                   .

Считая, что торможение осуществляется всеми колесами (Рт мах = φ·G) до полной остановки (v2= 0), окончательно имеем:

                                         .

Из приведенных выше уравнений  видно, что время торможения и  тормозной путь могут изменяться в широких пределах в зависимости от коэффициента сцепления φ, то есть от дорожных условий. На дорогах с мокрым или грязным дорожным покрытием φ = 0,2. Для сухих асфальтовых или бетонных дорог φ = 0,85.

Коэффициент β учитывает влияние момента инерции вращающихся масс автомобиля и двигателя. Поэтому, когда двигатель соединен с трансмиссией автомобиля, часть энергии торможения расходуется на поглощение кинетической энергии маховика и других вращающихся деталей двигателя. При выключенном сцеплении его величина может быть принята равной 1.

Время торможение возрастает пропорционально  скорости движения автомобиля, а тормозной путь пропорционально квадрату скорости. Он зависит также от реакции водителя, времени срабатывания тормозов и других факторов. Поэтому реальный тормозной путь с учетом эксплуатационных условий торможения будет отличаться (в сторону его увеличения) от расчетной величины. Например, длина тормозного пути при торможении на скорости 50 км/ч составляет для легкового автомобиля класса ГАЗ-3110 примерно 15 м.

Торможение двигателем обычно применяют на затяжных спусках и в условиях недостаточного сцепления колес с дорогой. Чем ниже передача, на которой автомобиль движется, тем выше момент сопротивления, создаваемый двигателем (из-за большего передаточного числа в трансмиссии от ведущего колеса к двигателю). При движении по скользкой дороге рекомендуется тормозить без разъединения двигателя с трансмиссией для исключения блокировки ведущих колес.

 

                  Топливная экономичность автомобиля.

В качестве показателей топливной экономичности автомобилей принят  расход топлива в кг или литрах на 100 км пройденного пути.

Экономичность автомобиля зависит  от экономичности его двигателя и затрат мощности на преодоление сопротивлений движению. Показателями топливной экономичности автомобильного двигателя служат: удельный эффективный расход топлива gе (г/кВт.ч) и эффективный КПД ηе.

Эти показатели не могут в полной мере отражать эффективность топливной экономичности автомобиля. При известных величинах часового расхода топлива (GТ = gеNе) двигателем и скорости движения автомобиля, связь между топливной экономичностью двигателя и автомобиля может быть выражена формулой:

                                              Qs = , л/100 км,

                    или                   Qs = , кг/100 км,

 где Qs – расход топлива автомобилем в л или кг на 100 км пробега;

        v – скорость движения автомобиля, км/ч;

        ρ – плотность топлива,  кг/л.

В приведенной формуле время t100 прохождения автомобилем 100 км пути определено как 100/ v .

Топливная экономичность автомобиля зависит от  конструктивных и эксплуатационных факторов. Удельный эффективный расход топлива двигателя определяется уровнем совершенства его конструкции и параметрами скоростных и нагрузочных характеристик.

Эффективная мощность двигателя в  установившемся режиме движения автомобиля на данной скорости равна сумме мощностей, затрачиваемых на преодоление всех сопротивлений (см. раздел Тяговый и мощностной балансы автомобиля). Поэтому приведенную выше формулу можно представить в таком виде:

                             Qs = gе·(Nтр + Nψ + Nw) / (10·ρ·v).

Последняя зависимость показывает, что расход топлива автомобилем возрастает с увеличением мощности, необходимой на преодоления сопротивления в трансмиссии Nтр, а также сопротивлений дороги Nψ=Nf  + Nh и воздуха Nw.

Плотность топлива ρ введена в зависимость для перевода расхода из единиц массы в литры, так как заправку топливного бака оценивают в литрах.

Мощность двигателя, которая затрачивается на движение автомобиля по заданной дороге, определяют из уравнения мощностного баланса:

                                  Ne = (ψ·G·v + kw·Fw·v3) / ηтр .

Как видно, эффективная  мощность двигателя при движении автомобиля без ускорения расходуется на преодоление суммарных сил дорожного сопротивления (качения и подъема), сопротивления воздуха с учетом потери энергии в трансмиссии (коробке передач ηкп и главной передачи η0).

Использование уравнения для теоретического определения путевого расхода топлива Qs затруднено из-за того, что удельный эффективный расход топлива двигателем меняется в зависимости от скоростного и нагрузочного режимов его работы. При отсутствии этих характеристик, приближенно удельный эффективный расход топлива двигателем определяют по эмпирической зависимости:

                                    ge = gN·kn·kN,

где gN - удельный эффективный расход топлива при максимальной мощности двигателя Nемах (берется согласно результатам теплового расчета  двигателя);

 kn - коэффициент, учитывающий изменение удельного эффективного расхода топлива в зависимости от частоты вращения  вала двигателя (таблица 2);

 kN - коэффициент, учитывающий изменение удельного эффективного расхода топлива в зависимости от мощности двигателя (таблица 2).

Расход топлива в литрах на 100 км пройденного пути подсчитывают не менее, чем для пяти скоростных режимов при движении автомобиля на прямой передаче по хорошей горизонтальной дороге (с суммарным коэффициентом сопротивления качению ψ1 = f1 ) и дороге несколько худшего качества (ψ2 = f2).

                                                                                              Таблица 2.

Значение коэффициентов kN и kn для бензиновых двигателей  и дизелей

Режим работы двигателя

kN для бензинового двигателя

kN для дизеля

kn для всех двигателей

Ne / Nемах ,      n/nN

                  0,2

        1,25

       0,85

      1,1

                  0,4

        0,88

       0,82

      1,0

                  0,6

        0,75

       0,72

      0,8

                  0,8

        0,72

       0,72

      0,8

                  1,0

        0,75

       0,75

      1,0


Примечание: Ne / Nемах – отношение текущей эффективной мощности двигателя к максимальной (для оценки коэффициента kN ) ; n/nN – отношение текущей частоты вращения к частоте, соответствующей максимальной мощности (для оценки коэффициента kn ).

По данным расчета строят экономическую  характеристику    Qs =f(v). На рис.4 приведен вариант выполнения  экономической характеристики автомобиля для различных условий эксплуатации (сухое асфальтовое покрытие f1 =0,015 и грунтовая дорога f2 = 0,03).

На построенной экономической  характеристике выделяют точку (скоростной режим движения машины), соответствующую минимальному путевому расходу топлива и соответствующую ей скорость, которую называют экономичной.

При последовательном увеличении скорости движении автомобиля от минимально устойчивой скорости на прямой передачи расход топлива несколько уменьшается в связи с переходом на более экономичный режим работы двигателя. Это соответствует характеру протекания кривой удельного эффективного расхода топлива по его внешней скоростной характеристике.

Значение путевого расхода топлива  по мере роста скорости автомобиля доходит до минимального уровня. Далее, в связи с увеличением сопротивления воздуха  (оно возрастает пропорционально квадрату скорости) и переходом работы двигателя на менее экономичные режимы, в том числе и на режим обогащенной смеси (например, за счет включения в работу системы экономайзера), начинает повышаться.

 

         Qs , л/100 км

                                                                            v. км/ч

Рис.4. Топливно-экономическая характеристика легкового автомобиля:

Qs IV f1, Qs IV f2 – путевой расход топлива автомобилем при движении на четвертой (прямой) передаче по дороге с коэффициентами сопротивления качению f1 и f2 соответственно;  Qs V f1, Qs V f2 – путевой расход топлива автомобилем при движении на пятой (экономической) передаче по дороге с коэффициентами сопротивления качению f1 и f2 соответственно.

 

В современных автомобилях введены  усовершенствования в конструкцию  систем питания, что позволяет получить минимальный путевой расход при  движении на высшей передаче с минимально устойчивой скоростью. 

На пониженных передачах путевой  расход топлива возрастает, так как увеличивается число оборотов двигателя на единицу пройденного пути.

В технических характеристиках  указывают контрольный расход топлива, полученный при равномерном движении автомобиля с полной нагрузкой на высшей передаче по сухому асфальтированному шоссе с уклоном не более ± 1,5% и со скоростью, близкой к экономичной.

Информация о работе Теория эксплуатационных свойст автомобилей