Автор работы: Пользователь скрыл имя, 22 Апреля 2013 в 14:11, курсовая работа
ПРОИЗВОДСТВЕННАЯ ФУНКЦИЯ (ПФ)1 [production function] (то же: функция производства) — экономико-математическое уравнение, связывающее переменные величины затрат (ресурсов) с величинами продукции (выпуска). ПФ применяются для анализа влияния различных сочетаний факторов на объем выпуска в определенный момент времени (статический вариант П. ф.) и для анализа, а также прогнозирования соотношения объемов факторов и объема выпуска в разные моменты времени (динамический вариант Пф.) на различных уровнях экономики — от фирмы (предприятия) до народного хозяйства в целом (агрегированная ПФ, в которой выпуском служит показатель совокупного общественного продукта или национального дохода и т. п.).
Введение
1. Понятие производства и производственных функций
2. Виды и типы производственных функций
2.1 Изокванта и ее типы
2.2 Оптимальная комбинация ресурсов
2.3 Функции предложения и их свойства
3. Практическое применение производственной функции
3.1 Моделирование издержек и прибыли предприятия (фирмы)
3.2 Методы учета научно-технического прогресса
Заключение
Список литературы
Четвертый столбец характеризует значения указанных выше маргинальных издержек МС , которые показывают, во сколько обходится производство одного дополнительного изделия в данной ситуации. Нетрудно заметить, что маргинальные издержки возрастают по мере роста производства, что хорошо согласуется с положением, высказанным в начале этого параграфа. При рассмотрении таблицы следует обратить внимание на то, что оптимальные объемы находятся точно на пересечении строки (маргинальные издержки МС) и столбца (цена p) с равными их значениями, что совершенно аккуратно соотносится с правилом оптимальности, установленным выше.
Проведенный выше анализ относится к обстановке совершенной конкуренции, когда производитель не может повлиять своими действиями на систему цен, и поэтому цена p на товар y выступает в модели производителя как экзогенная величина.
В случае же несовершенной конкуренции производитель может оказывать непосредственное влияние на цену. В особенности это относится к монопольному производителю товара, который формирует цену из соображения разумной рентабельности.
Рассмотрим фирму с линейной функцией издержек, которая определяет цену таким образом, чтобы прибыль составляла определенный процент (долю 0 < g < 1) от валового дохода, т.е.
Отсюда имеем
Валовой доход
и производство оказывается безубыточным, начиная с самых малых объемов производства ( y w 0). Легко видеть, что цена зависит от объема, т.е. p = p ( y ), и при увеличении объема производства ( у ) цена товара уменьшается, т.е. p' ( y ) < 0. Это положение имеет место для монополиста и в общем случае.
Требование максимизации прибыли для монополиста имеет вид
Предполагая по-прежнему, что имеем уравнение для нахождения оптимального выпуска ( ):
Полезно заметить, что оптимальный выпуск монополиста () как правило, не превосходит оптимального выпуска конкурентного производителя в формуле, помеченной звездочкой (С.37).
Более реалистичная (но также простая) модель фирмы используется для того, чтобы учесть ресурсные ограничения, которые играют очень большую роль в хозяйственной деятельности производителей. В модели выделяется один наиболее дефицитный ресурс (рабочая сила, основные фонды, редкий материал, энергия и т.п.) и предполагается, что фирма может его использовать не более чем в количестве Q . Фирма может производить n различных продуктов. Пусть y 1 , ..., y j , ..., y n искомые объемы производства этих продуктов; p 1 , ..., p j , ..., p n их цены. Пусть также q цена единицы дефицитного ресурса. Тогда валовой доход фирмы равен
а прибыль составит
Легко видеть, что при фиксированных q и Q задача о максимизации прибыли преобразуется в задачу максимизации валового дохода.
Предположим далее, что функция издержек ресурса для каждого продукта C j ( y j ) обладает теми же свойствами, которые были высказаны выше для функции С ( у ). Таким образом, C j ' ( y j ) > 0 и C j '' ( y j ) > 0.
В окончательном виде модель оптимального
поведения фирмы с одним
Нетрудно видеть, что в достаточно общем случае решение этой оптимизационной задачи находится путем исследования системы уравнений:
(**) |
Где j множитель Лагранжа.
Заметим, что соотношение
является по существу аналогом отмеченного выше совпадения в оптимальной точке маргинального дохода и маргинальных издержек. В случае квадратичных функций издержек
из системы уравнений (**) имеем:
(***) |
Заметим, что оптимальный выбор фирмы зависит от всей совокупности цен на продукты ( p 1 , ..., p n ), причем этот выбор является однородной функцией системы цен, т.е. при одновременном изменении цен в одинаковое число раз оптимальные выпуски не изменяются. Нетрудно видеть также, что из уравнений, помеченных звездочками (***), следует, что при увеличении цены на продукт n (при неизменных ценах на другие продукты) его выпуск следует увеличить с целью получения максимальной прибыли, так как
а производство остальных товаров уменьшится, так как
Эти соотношения в совокупности показывают, что в данной модели все продукты являются конкурирующими. Из формулы (***) вытекает также очевидное соотношение
т.е. при увеличении объема ресурса
(капиталовложений, рабочей силы и
т.п.) оптимальные выпуски
Можно привести ряд простых примеров, которые помогут лучше понять правило оптимального выбора фирмы по принципу максимума прибыли:
1) пусть n = 2; p 1 = p 2 = 1; a 1 = a 2 = 1; Q = 0,5; q = 0,5.
Тогда из (***) имеем:
= 0,5; = 0,5; П = 0,75; = 1;
2) пусть теперь все условия остались прежними, но удвоилась цена на первый продукт: p 1 = 2.
Тогда оптимальный по прибыли план фирмы: = 0,6325; = 0,3162.
Ожидаемая максимальная прибыль заметно возрастает: П = 1,3312; = 1,58;
3) заметим, что в предыдущем примере 2 фирма должна изменить объемы производств, увеличив производство первого и уменьшив производство второго продукта. Предположим, однако, что фирма не гонится за максимальной прибылью и не станет менять налаженное производство, т.е. выберет программу y 1 = 0,5; y 2 = 0,5.
Оказывается, что в этом случае прибыль составит П = 1,25. Это означает, что при повышении цен на рынке фирма может получить значительное увеличение прибыли без изменения плана выпуска.
3.2 Методы учета научно-
Общепризнанным следует
а) улучшение со временем качества рабочей силы вследствие повышения квалификации работников и освоения ими методов использования более совершенной техники;
б) улучшение качества машин и оборудования приводит к тому, что определенная сумма капитальных вложений (в неизменных ценах) позволяет по прошествии времени приобрести более эффективную машину;
в) улучшение многих сторон организации производства, в том числе снабжения и сбыта, банковских операций и других взаимных расчетов, развитие информационной базы, образование различного рода объединений, развитие международной специализации и торговли и т.п.
В связи с этим термин научно-технический прогресс можно интерпретировать как совокупность всех явлений, которые при фиксированных количествах затрачиваемых производственных факторов дают возможность увеличить выпуск качественной, конкурентоспособной продукции. Весьма расплывчатый характер такого определения приводит к тому, что исследование влияния НТП проводится лишь как анализ того дополнительного увеличения продукции, которое не может быть объяснено чисто количественным ростом производственных факторов. Главный подход к учету НТП сводится к тому, что в совокупность характеристик выпуска или затрат вводится время ( t ) как независимый производственный фактор и рассматривается преобразование во времени либо производственной функции, либо технологического множества.
Остановимся на способах учета НТП путем преобразования производственной функции (ПФ), причем за основу примем двухфакторную ПФ:
где в качестве производственных факторов выступают капитал ( К ) и труд ( L ). Модифицированная ПФ в общем случае имеет вид
причем выполняется условие
которое и отражает факт роста производства во времени при фиксированных затратах труда и капитала. Геометрическая иллюстрация такого процесса дана на рис. 4.13, где показано, что изокванта, соответствующая выпуску продукции в объеме Q , смещается с течением времени ( t 2 > t 1 ) вниз и налево.
При разработке конкретных модифицированных ПФ обычно стремятся отразить характер НТП в наблюдаемой ситуации. При этом различают четыре случая:
а) существенное улучшение со временем качества рабочей силы позволяет добиться прежних результатов с меньшим количеством занятых; подобный вид НТП часто называют трудосберегающим. Модифицированная ПФ имеет вид
где монотонная функция l ( t ) характеризует рост производительности труда;
Рис. 13. Рост производства во времени при фиксированных затратах труда и капитала
б) преимущественное улучшение качества машин и оборудования повышает фондоотдачу, имеет место капиталосберегающий НТП и соответствующая ПФ:
где возрастающая функция k ( t ) отражает изменение фондоотдачи;
в) если имеет место значительное влияние обоих упомянутых явлений, то используется ПФ в форме
г) если же нет возможности выявить влияние НТП на производственные факторы, то применяется ПФ в виде
где a ( t ) возрастающая функция, выражающая рост продукции при неизменных значениях затрат факторов. Для исследования свойств и особенностей НТП используются некоторые соотношения между результатами производства и затратами факторов. К их числу относятся:
а) средняя производительность труда
б) средняя фондоотдача
в) коэффициент фондовооруженности работника
г) равенство между уровнем оплаты труда и предельной (маргинальной) производительности труда
д) равенство между предельной фондоотдачей и нормой банковского процента
Говорят, что НТП является нейтральным, если он не изменяет с течением времени определенных связей между приведенными величинами.
Рассмотрим далее три случая:
1) прогресс называется нейтральным по Хиксу, если в течение времени остается неизменным соотношение между фондовооруженностью ( x ) и предельной нормой замены факторов ( w / r ). В частности, если w / r = const, то замена труда на капитал и наоборот не принесет никакой выгоды и фондовооруженность x = K / L также останется постоянной. Можно показать, что в этом случае модифицированная ПФ имеет вид
,
и нейтральность по Хиксу эквивалентна рассмотренному выше влиянию НТП непосредственно на выпуск продукции. В рассматриваемой ситуации изокванта с течением времени смещается налево вниз путем преобразования подобия, т.е. остается в точности той же формы, что и в исходном положении;
2) прогресс называется нейтральным по Харроду, если в течение рассматриваемого периода времени норма банковского процента ( r ) зависит лишь от фондоотдачи ( k ), т.е. на нее не влияет НТП. Это означает, что предельная фондоотдача установлена на уровне нормы процента и дальнейшее увеличение капитала нецелесообразно. Можно показать, что такой тип НТП соответствует производственной функции
т.е. технический прогресс является трудосберегающим;
3) прогресс является нейтральным по Солоу, если сохраняется неизменным равенство между уровнем оплаты труда ( w ) и предельной производительностью труда и дальнейшее увеличение затрат труда невыгодно. Можно показать, что в этом случае ПФ имеет вид
т.е. НТП оказывается
В случае нейтральности по Хиксу имеем модифицированную ПФ
где a ( t ) возрастающая функция t . Это означает, что с течением времени изокванта Q (отрезок прямой АВ ) смещается к началу координат параллельным переносом (рис. 14) в положение A 1 B 1 .
В случае нейтральности по Харроду модифицированная ПФ имеет вид
где l ( t ) возрастающая функция.
Очевидно, что с течением времени точка А остается на месте и изокванта смещается к началу координат при помощи поворота в положение AB 1 (рис. 15).
Для прогресса, нейтрального по Солоу,
соответствующая
где k ( t ) возрастающая функция. Изокванта смещается к началу координат, но точка В не сдвигается, и происходит поворот в положение A 1 B (рис. 16).
Рис. 14. Сдвиг изокванты при нейтральном НТП по Хиксу |
Рис. 15. Сдвиг изокванты при трудосберегающем НТП |
Рис. 16. Сдвиг изокванты при фондосберегающем НТП |
При построении моделей производства с учетом НТП в основном используются следующие подходы:
а) представление об экзогенном (или автономном) техническом прогрессе, который существует также в том случае, когда основные производственные факторы не изменяются. Частным случаем такого НТП является нейтральный прогресс по Хиксу, который обычно учитывается с помощью экспоненциального множителя, например:
Здесь l > 0, характеризует темп НТП. Нетрудно видеть, что время здесь выступает как независимый фактор роста производства, однако при этом создается впечатление, что НТП происходит сам по себе, не требуя дополнительных затрат труда и капиталовложений;
б) представление о техническом прогрессе, овеществленном в капитале, связывает рост влияний НТП с ростом капитальных вложений. Для формализации этого подхода за основу берется модель прогресса, нейтрального по Солоу:
которая записывается в виде
где K 0 основные фонды на начало периода,D K накопление капитала в течение периода, равное сумме инвестиций.
Информация о работе Сущность, модели, границы применения метода производственной функции