Сущность, модели, границы применения метода производственной функции

Автор работы: Пользователь скрыл имя, 22 Апреля 2013 в 14:11, курсовая работа

Описание работы

ПРОИЗВОДСТВЕННАЯ ФУНКЦИЯ (ПФ)1 [production function] (то же: функция производства) — экономико-математическое уравнение, связывающее переменные величины затрат (ресурсов) с величинами продукции (выпуска). ПФ применяются для анализа влияния различных сочетаний факторов на объем выпуска в определенный момент времени (статический вариант П. ф.) и для анализа, а также прогнозирования соотношения объемов факторов и объема выпуска в разные моменты времени (динамический вариант Пф.) на различных уровнях экономики — от фирмы (предприятия) до народного хозяйства в целом (агрегированная ПФ, в которой выпуском служит показатель совокупного общественного продукта или национального дохода и т. п.).

Содержание работы

Введение
1. Понятие производства и производственных функций
2. Виды и типы производственных функций
2.1 Изокванта и ее типы
2.2 Оптимальная комбинация ресурсов
2.3 Функции предложения и их свойства
3. Практическое применение производственной функции
3.1 Моделирование издержек и прибыли предприятия (фирмы)
3.2 Методы учета научно-технического прогресса
Заключение
Список литературы

Файлы: 1 файл

Курсовая работа2.doc

— 325.50 Кб (Скачать файл)

 

Четвертый столбец характеризует  значения указанных выше маргинальных издержек МС , которые показывают, во сколько обходится производство одного дополнительного изделия в данной ситуации. Нетрудно заметить, что маргинальные издержки возрастают по мере роста производства, что хорошо согласуется с положением, высказанным в начале этого параграфа. При рассмотрении таблицы следует обратить внимание на то, что оптимальные объемы находятся точно на пересечении строки (маргинальные издержки МС) и столбца (цена p) с равными их значениями, что совершенно аккуратно соотносится с правилом оптимальности, установленным выше.

Проведенный выше анализ относится  к обстановке совершенной конкуренции, когда производитель не может повлиять своими действиями на систему цен, и поэтому цена p на товар y выступает в модели производителя как экзогенная величина.

В случае же несовершенной конкуренции  производитель может оказывать  непосредственное влияние на цену. В особенности это относится к монопольному производителю товара, который формирует цену из соображения разумной рентабельности.

Рассмотрим фирму с линейной функцией издержек, которая определяет цену таким образом, чтобы прибыль  составляла определенный процент (долю 0 < g < 1) от валового дохода, т.е.

 

 

Отсюда имеем 

 

 

 

Валовой доход

 

 

 

и производство оказывается безубыточным, начиная с самых малых объемов  производства ( y w 0). Легко видеть, что цена зависит от объема, т.е. p = p ( y ), и при увеличении объема производства ( у ) цена товара уменьшается, т.е. p' ( y ) < 0. Это положение имеет место для монополиста и в общем случае.

Требование максимизации прибыли  для монополиста имеет вид 

 

 

 

Предполагая по-прежнему, что имеем уравнение для нахождения оптимального выпуска ( ):

 

 

 

Полезно заметить, что оптимальный выпуск монополиста () как правило, не превосходит оптимального выпуска конкурентного производителя в формуле, помеченной звездочкой (С.37).

Более реалистичная (но также простая) модель фирмы используется для того, чтобы учесть ресурсные ограничения, которые играют очень большую  роль в хозяйственной деятельности производителей. В модели выделяется один наиболее дефицитный ресурс (рабочая сила, основные фонды, редкий материал, энергия и т.п.) и предполагается, что фирма может его использовать не более чем в количестве Q . Фирма может производить n различных продуктов. Пусть y 1 , ..., y j , ..., y n искомые объемы производства этих продуктов; p 1 , ..., p j , ..., p n их цены. Пусть также q цена единицы дефицитного ресурса. Тогда валовой доход фирмы равен

 

 

 

а прибыль составит

 

 

 

Легко видеть, что при фиксированных q и Q задача о максимизации прибыли преобразуется в задачу максимизации валового дохода.

Предположим далее, что функция  издержек ресурса для каждого  продукта C j ( y j ) обладает теми же свойствами, которые были высказаны выше для функции С ( у ). Таким образом, C j ' ( y j ) > 0 и C j '' ( y j ) > 0.

В окончательном виде модель оптимального поведения фирмы с одним ограниченным ресурсом следующая:

 

 

 

Нетрудно видеть, что в достаточно общем случае решение этой оптимизационной задачи находится путем исследования системы уравнений:

   

(**)


 

Где j множитель Лагранжа.

Заметим, что соотношение 

 

 

 

является по существу аналогом отмеченного  выше совпадения в оптимальной точке  маргинального дохода и маргинальных издержек. В случае квадратичных функций  издержек

 

 

 

из системы уравнений (**) имеем:

 

   

(***)


 

Заметим, что оптимальный выбор  фирмы зависит от всей совокупности цен на продукты ( p 1 , ..., p n ), причем этот выбор является однородной функцией системы цен, т.е. при одновременном изменении цен в одинаковое число раз оптимальные выпуски не изменяются. Нетрудно видеть также, что из уравнений, помеченных звездочками (***), следует, что при увеличении цены на продукт n (при неизменных ценах на другие продукты) его выпуск следует увеличить с целью получения максимальной прибыли, так как

 

 

а производство остальных товаров  уменьшится, так как 

 

 

 

Эти соотношения в совокупности показывают, что в данной модели все продукты являются конкурирующими. Из формулы (***) вытекает также очевидное  соотношение 

 

 

 

т.е. при увеличении объема ресурса (капиталовложений, рабочей силы и  т.п.) оптимальные выпуски увеличиваются.

Можно привести ряд простых примеров, которые помогут лучше понять правило оптимального выбора фирмы  по принципу максимума прибыли:

1) пусть n = 2; p 1 = p 2 = 1; a 1 = a 2 = 1; Q = 0,5; q = 0,5.

Тогда из (***) имеем:

 

 

 = 0,5;  = 0,5; П = 0,75;  = 1;

 

2) пусть теперь все условия остались прежними, но удвоилась цена на первый продукт: p 1 = 2.

Тогда оптимальный по прибыли план фирмы:  = 0,6325;  = 0,3162.

Ожидаемая максимальная прибыль заметно возрастает: П = 1,3312;  = 1,58;

3) заметим, что в предыдущем примере 2 фирма должна изменить объемы производств, увеличив производство первого и уменьшив производство второго продукта. Предположим, однако, что фирма не гонится за максимальной прибылью и не станет менять налаженное производство, т.е. выберет программу y 1 = 0,5; y 2 = 0,5.

Оказывается, что в этом случае прибыль составит П = 1,25. Это означает, что при повышении цен на рынке фирма может получить значительное увеличение прибыли без изменения плана выпуска.

 

3.2 Методы учета научно-технического  прогресса

 

Общепризнанным следует считать  тот факт, что с течением времени  на предприятии, сохраняющем фиксированную численность работников и постоянный объем основных фондов, выпуск продукции увеличивается. Это означает, что помимо обычных производственных факторов, связанных с затратами ресурсов, существует фактор, который обычно называют научно-техническим прогрессом (НТП). Этот фактор можно рассматривать как синтетическую характеристику, отражающую совместное влияние на экономический рост многих существенных явлений, среди которых нужно отметить следующие:

а) улучшение со временем качества рабочей силы вследствие повышения квалификации работников и освоения ими методов использования более совершенной техники;

б) улучшение качества машин и оборудования приводит к тому, что определенная сумма капитальных вложений (в неизменных ценах) позволяет по прошествии времени приобрести более эффективную машину;

в) улучшение многих сторон организации производства, в том числе снабжения и сбыта, банковских операций и других взаимных расчетов, развитие информационной базы, образование различного рода объединений, развитие международной специализации и торговли и т.п.

В связи с этим термин научно-технический прогресс можно интерпретировать как совокупность всех явлений, которые при фиксированных количествах затрачиваемых производственных факторов дают возможность увеличить выпуск качественной, конкурентоспособной продукции. Весьма расплывчатый характер такого определения приводит к тому, что исследование влияния НТП проводится лишь как анализ того дополнительного увеличения продукции, которое не может быть объяснено чисто количественным ростом производственных факторов. Главный подход к учету НТП сводится к тому, что в совокупность характеристик выпуска или затрат вводится время ( t ) как независимый производственный фактор и рассматривается преобразование во времени либо производственной функции, либо технологического множества.

Остановимся на способах учета НТП  путем преобразования производственной функции (ПФ), причем за основу примем двухфакторную  ПФ:

 

 

 

где в качестве производственных факторов выступают капитал ( К ) и труд ( L ). Модифицированная ПФ в общем случае имеет вид

 

 

причем выполняется условие 

 

 

 

которое и отражает факт роста производства во времени при фиксированных  затратах труда и капитала. Геометрическая иллюстрация такого процесса дана на рис. 4.13, где показано, что изокванта, соответствующая выпуску продукции в объеме Q , смещается с течением времени ( t 2 > t 1 ) вниз и налево.

При разработке конкретных модифицированных ПФ обычно стремятся отразить характер НТП в наблюдаемой ситуации. При этом различают четыре случая:

а) существенное улучшение со временем качества рабочей силы позволяет добиться прежних результатов с меньшим количеством занятых; подобный вид НТП часто называют трудосберегающим. Модифицированная ПФ имеет вид  

где монотонная функция l ( t ) характеризует рост производительности труда;

 

 

Рис. 13. Рост производства во времени при фиксированных затратах труда и капитала

 

б) преимущественное улучшение качества машин и оборудования повышает фондоотдачу, имеет место капиталосберегающий НТП и соответствующая ПФ:

 

 

 

где возрастающая функция k ( t ) отражает изменение фондоотдачи;

в) если имеет место значительное влияние обоих упомянутых явлений, то используется ПФ в форме

 

 

г) если же нет возможности выявить влияние НТП на производственные факторы, то применяется ПФ в виде

 

 

 

где a ( t ) возрастающая функция, выражающая рост продукции при неизменных значениях затрат факторов. Для исследования свойств и особенностей НТП используются некоторые соотношения между результатами производства и затратами факторов. К их числу относятся:

а) средняя производительность труда

 

 

 

б) средняя фондоотдача

 

 

 

в) коэффициент фондовооруженности работника

 

 

 

г) равенство между уровнем оплаты труда и предельной (маргинальной) производительности труда

 

 

д) равенство между предельной фондоотдачей и нормой банковского процента

 

 

 

Говорят, что НТП является нейтральным, если он не изменяет с течением времени  определенных связей между приведенными величинами.

Рассмотрим далее три случая:

1) прогресс называется нейтральным по Хиксу, если в течение времени остается неизменным соотношение между фондовооруженностью ( x ) и предельной нормой замены факторов ( w / r ). В частности, если w / r = const, то замена труда на капитал и наоборот не принесет никакой выгоды и фондовооруженность x = K / L также останется постоянной. Можно показать, что в этом случае модифицированная ПФ имеет вид

 

,

 

и нейтральность по Хиксу эквивалентна рассмотренному выше влиянию НТП  непосредственно на выпуск продукции. В рассматриваемой ситуации изокванта с течением времени смещается налево вниз путем преобразования подобия, т.е. остается в точности той же формы, что и в исходном положении;

2) прогресс называется нейтральным по Харроду, если в течение рассматриваемого периода времени норма банковского процента ( r ) зависит лишь от фондоотдачи ( k ), т.е. на нее не влияет НТП. Это означает, что предельная фондоотдача установлена на уровне нормы процента и дальнейшее увеличение капитала нецелесообразно. Можно показать, что такой тип НТП соответствует производственной функции

 

 

 

т.е. технический прогресс является трудосберегающим;

3) прогресс является нейтральным по Солоу, если сохраняется неизменным равенство между уровнем оплаты труда ( w ) и предельной производительностью труда и дальнейшее увеличение затрат труда невыгодно. Можно показать, что в этом случае ПФ имеет вид

 

 

 

т.е. НТП оказывается фондосберегающим. Дадим графическое представление  трех типов НТП на примере линейной производственной функции 

 

 

 

В случае нейтральности по Хиксу  имеем модифицированную ПФ

 

 

 

где a ( t ) возрастающая функция t . Это означает, что с течением времени изокванта Q (отрезок прямой АВ ) смещается к началу координат параллельным переносом (рис. 14) в положение A 1 B 1 .

В случае нейтральности по Харроду  модифицированная ПФ имеет вид 

 

 

где l ( t ) возрастающая функция.

Очевидно, что с течением времени  точка А остается на месте и изокванта смещается к началу координат при помощи поворота в положение AB 1 (рис. 15).

Для прогресса, нейтрального по Солоу, соответствующая модифицированная ПФ

 

 

 

где k ( t ) возрастающая функция. Изокванта смещается к началу координат, но точка В не сдвигается, и происходит поворот в положение A 1 B (рис. 16).

 

 

Рис. 14. Сдвиг изокванты при нейтральном НТП по Хиксу

 

Рис. 15. Сдвиг изокванты при трудосберегающем НТП

 

Рис. 16. Сдвиг изокванты при фондосберегающем НТП


 

При построении моделей производства с учетом НТП в основном используются следующие подходы:

а) представление об экзогенном (или автономном) техническом прогрессе, который существует также в том случае, когда основные производственные факторы не изменяются. Частным случаем такого НТП является нейтральный прогресс по Хиксу, который обычно учитывается с помощью экспоненциального множителя, например:

 

 

 

Здесь l > 0, характеризует темп НТП. Нетрудно видеть, что время здесь выступает как независимый фактор роста производства, однако при этом создается впечатление, что НТП происходит сам по себе, не требуя дополнительных затрат труда и капиталовложений;

б) представление о техническом прогрессе, овеществленном в капитале, связывает рост влияний НТП с ростом капитальных вложений. Для формализации этого подхода за основу берется модель прогресса, нейтрального по Солоу:

 

 

 

которая записывается в виде

 

 

 

где K 0 основные фонды на начало периода,D K накопление капитала в течение периода, равное сумме инвестиций.

Информация о работе Сущность, модели, границы применения метода производственной функции