Автор работы: Пользователь скрыл имя, 22 Апреля 2013 в 14:11, курсовая работа
ПРОИЗВОДСТВЕННАЯ ФУНКЦИЯ (ПФ)1 [production function] (то же: функция производства) — экономико-математическое уравнение, связывающее переменные величины затрат (ресурсов) с величинами продукции (выпуска). ПФ применяются для анализа влияния различных сочетаний факторов на объем выпуска в определенный момент времени (статический вариант П. ф.) и для анализа, а также прогнозирования соотношения объемов факторов и объема выпуска в разные моменты времени (динамический вариант Пф.) на различных уровнях экономики — от фирмы (предприятия) до народного хозяйства в целом (агрегированная ПФ, в которой выпуском служит показатель совокупного общественного продукта или национального дохода и т. п.).
Введение
1. Понятие производства и производственных функций
2. Виды и типы производственных функций
2.1 Изокванта и ее типы
2.2 Оптимальная комбинация ресурсов
2.3 Функции предложения и их свойства
3. Практическое применение производственной функции
3.1 Моделирование издержек и прибыли предприятия (фирмы)
3.2 Методы учета научно-технического прогресса
Заключение
Список литературы
Очевидно, что если инвестирование не производится, тоD K = 0, и увеличение выпуска продукции за счет НТП не происходит;
в) рассмотренные выше подходы к моделированию НТП обладают общей чертой: прогресс выступает как заданная экзогенно величина, которая влияет на производительность труда или фондоотдачу и посредством этого сказывается на экономическом росте.
Однако в долгосрочном плане НТП является и результатом развития, и, в значительной мере, его причиной. Поскольку именно экономическое развитие позволяет богатым обществам финансировать создание новых образцов техники, а затем уже пожинать плоды научно-технической революции. Поэтому вполне правомерен подход к НТП как эндогенному явлению, вызванному (индуцированному) экономическим ростом.
Здесь выделяются два основных направления моделирования НТП:
1) модель индуцированного прогресса основана на формуле
причем предполагается, что общество может распределять предназначенные для НТП инвестиции между его различными направлениями. Например, между ростом фондоотдачи ( k ( t )) (улучшение качества машин) и ростом производительности труда ( l ( t )) (повышение квалификации работников) или выбором наилучшего (оптимального) направления технического развития при данном объеме выделенных капитальных вложений;
2) модель процесса обучения в ходе производства, предложенная К. Эрроу, основана на наблюдаемом факте взаимного влияния роста производительности труда и количества новых изобретений. В ходе производства работники приобретают опыт, и время на изготовление изделия уменьшается, т.е. производительность труда и сам трудовой вклад зависят от объема производства
В свою очередь, рост трудового фактора, согласно производственной функции
приводит к росту производства. В простейшем варианте модели используются формулы:
(производственная функция Кобба - Дугласа).
Отсюда имеем соотношение
которое при заданных функциях K ( t ) и L 0 ( t ) показывает более быстрый рост y , обусловленный отмеченным выше взаимным влиянием НТП и экономического развития.
Пусть, например:
Тогда рост без учета взаимного влияния описывается уравнением
а рост с учетом взаимного влияния уравнением
, или
т.е. оказывается существенно более быстрым.
Для линейной модели:
т.е. фондоотдача увеличивается.
Заключение
В заключении хотелось бы рассказать о производственной функции Кобба – Дугласа.
Возникновение теории производственных функций принято относить к 1927 г., когда появилась статья американских ученых экономиста П. Дугласа (P. Douglas) и математика Д. Кобба (D. Cobb) «Теория производства». В этой статье, была предпринята попытка, эмпирическим путем определить влияние затрачиваемого капитала и труда на объем выпускаемой продукции в обрабатывающей промышленности США.
Как уже было сказано, производственная функция отражает функциональную связь между объёмом эффективно используемых факторов производства (трудом и имущественным капиталом) и с их помощью достигаемым выпуском при существующем техническом и организационном знании.
При субституционной
Субстиционная производственная функция имеет, в общем следующее выражение:
где:
K – число производственного капитала
L – число производственных трудовых часов или, другими словами, число производственных единиц гуманного капитала
На основе условно введённой субстиционности факторов производства можно сделать следующие два вывода относительно функциональной взаимосвязи данных факторов:
При прочих равных увеличение одного из факторов производства ведёт к увеличению выпуска – первая производная положительна.
Однако предельная производительность
возрастающего фактора
Уровень организационных и технических знаний отображается в соответствующих формах взаимодействий факторов. В рассматриваемом случае уровень знаний постоянен, т.е. в данных рамках предполагается отсутствие технического прогресса. Таким образом, субстиционная функция производства может быть представлена в виде следующего изображения, отражающего взаимосвязь между количеством труда и выпуском при заданном количестве имущественного капитала (рисунок 1):
Рис. 17. Связь между производством и производственным трудом
Каждое увеличение количественного параметра имущественного капитала означает смещение кривой вверх и одновременного увеличения предельной производительности труда при заданном количестве рабочей силы, т.е. на основе вытекающего непосредственно из описанного вывода означает и более высокую величину выпуска при увеличении производственного фактора «труд»: кривая OK1 на рисунке показывает более крутой наклон по сравнению с кривой OK0 при любом числе занятых трудом.
С увеличением количественного
параметра имущественного капитала
увеличивается и средняя
Величина имущественного капитала
принимается в рамках данного
кратковременного анализа как экзогенно
заданная, поэтому в модели и описании
не учитывается технический
В 1927 г. Пол Дуглас обнаружил, что если совместить графики зависимости от времени логарифмов показателей реального объема выпуска (y), капитальных затрат (К) и затрат труда (L), то расстояния от точек графика показателей выпуска до точек графиков показателей затрат труда и капитала будут составлять постоянную пропорцию. Затем он обратился к Чарльзу Коббу с просьбой найти математическую зависимость, обладающую такой особенностью, и Кобб предложил следующую субституционную функцию:
Эта функция была предложена примерно 30 годами раньше Филипом Уикстидом (Wicksteed), но они были первыми, кто использовал для ее построения эмпирические данные.
Однако при больших значениях K и L эта функция не имеет экономического смысла, т.к. выпуск все время возрастает при возрастании затрат.
Кинетическая функция (где g - норма технического прогресса за единицу времени) получена умножением функции Кобба-Дугласа на eg, что снимает данную проблему и делает функцию Кобба-Дугласа экономически интересной.
Эластичность выпуска
,
и аналогичным образом легко показать, что (dy/dL)/(y/L) равно b.
Следовательно, увеличение затрат капитала на 1% приведет к росту выпуска продукции на a процентов, а увеличение затрат труда на 1% приведет к росту выпуска на b процентов. Можно предположить, что обе величины a и b находятся между нулем и единицей. Они должны быть положительными, так как увеличение затрат производственных факторов должно вызывать рост выпуска. В то же время, вероятно, они будут меньше единицы, так как разумно предположить, что уменьшение эффекта от масштаба производства приводит к более медленному росту выпуска продукции, чем затрат производственных факторов, если другие факторы остаются постоянными.
Если a и b в сумме превышают единицу, то говорят, что функция имеет возрастающий эффект от масштаба производства (это означает, что если К и L увеличиваются в некоторой пропорции, то y растет в большей пропорции). Если их сумма равна единице, то это говорит о постоянном эффекте от масштаба производства (y увеличивается в той же пропорции, что и К и L). Если их сумма меньше, чем единица, то имеет место убывающий эффект от масштаба производства (y увеличивается в меньшей пропорции, чем К и L).
В соответствии с допущением о конкурентности
рынков факторов производства и b имеют
дальнейшую интерпретацию как
.
Следовательно, общая сумма заработной платы (wL) будет равна by, а доля труда в общем выпуске продукции (wL/Y) составит постоянную величину b. Аналогичным образом норма прибыли выражается через dy/dK:
,
и, следовательно, общая прибыль (rК) будет равна ay, а доля прибыли будет постоянной величиной a.
Существует ряд проблем по применению такой функции, особенно в тех случаях, когда она используется для экономики в целом. В частности, даже в тех случаях, когда между выпуском продукции, производственным оборудованием и трудом в производственном процессе существует технологическая зависимость, то совершенно необязательно, что подобная зависимость существует тогда, когда указанные факторы комбинируются в масштабах экономики в целом. Во-вторых, даже если такая зависимость для экономики в целом существует, то нет никаких оснований считать, что она будет иметь простую форму.
Список литературы
1. 50 лекций по микроэкономике/ Институт "Экономическая Школа", 2002.
2.
Доугерти К. Введение в
3.
Институциональная экономика:
4.
Трактат по политической
5. Основы экономической теории. / Под ред. Камаева В.Д. - М.: Изд. МГТУ, 2006.
6.
Основы экономической теории (макроэкономика):
Учебное пособие./ Кравцова Г.Ф., Цветков
Н.И., Островская Т.И. Хабаровск:
ДВГУПС, 2001. http://www.dvgups.ru/METDOC/
7.
Учебник по основам
8. Самуэльсон П. Экономика.: Пер. с англ. - М.: Прогресс, 1964.
9.
Экономика предприятия:
10.
Ресурс интернет - .http://slovari.yandex.ru/
1 http://slovari.yandex.ru/dict/
Информация о работе Сущность, модели, границы применения метода производственной функции