Автор работы: Пользователь скрыл имя, 05 Марта 2014 в 15:20, реферат
Геохимическая миграция - неразрывный комплекс процессов, приводящих к перераспределению химических элементов в природных телах. Этот комплекс, включает перевод химических элементов в структурное состояние, форму нахождения, обеспечивающих их подвижность в данных условиях, транспортировку, осаждение, концентрирование и переход их в неподвижное состояние, равновесное с новыми условиями.
Геохимический барьер - участки, на которых в силу физических и химических причин резко уменьшается скорость транспортирующего потока.
Введение…………………………………………………………..…….2
Факторы миграции………………………….………………………….3
Параметры миграции........…………………………………………….4
Виды миграции...................................................................................5
Заключение……………………………………………………………..16
Список литературы……………………………………………………17
Биогенная миграция
Биогенная миграция является более сложным видом миграции, связанной с деятельностью живых организмов.
МИГРАЦИЯ БИОГЕННАЯ ГЕОХИМИЧЕСКАЯ — перемещение хим. элементов в биосфере при участии организмов. М. б. г. охватывает большую часть хим. элементов (Н, С, N, О, Р, S, Cl, К, Са, Сu, Mn, Zn, Mo, Fe, V, Со, Sr, Br, I и др.) и является одним из важнейших факторов геохимической миграции. В ее основе лежат свойства живого вещества и геохимической среды. Определенная роль в биогенной миграции принадлежит биогенным органическим веществам, являющимся продуктами посмертного превращения живого вещества. Характер и интенсивность биогенной миграции определяются массой живого вещества и его геохимической энергией. Участие организмов в рассеянии, концентрировании и распределении хим. элементов в биосфере можно объяснить только включением последних в процессы обмена веществ организмов и биогенный синтез соединений, содержат определенные элементы (напр., Сu — в окислительные ферменты, Сo — витамин В12, J — гормон тироксин, Zn — гормон инсулин).
Образование живого вещества и разложение органических веществ образуют единый биологический круговорот атомов, который в биосфере протекает повсеместно, хотя в разных формах и с разной интенсивностью. В ландшафте и верхних горизонтах моря в процессе фотосинтеза образуется живое вещество, здесь же происходит его минерализация. Часть органических веществ минерализуется не полностью и откладывается в илах. Закон биологического круговорота – один из основных законов геохимии, согласно которому в биосфере в ходе биологического круговорота атомы поглощаются живым веществом и заряжаются энергией, которую отдают в окружающую среду, покидая живое вещество. Главными носителями энергии являются природные воды.
Не минерализованные остатки органического вещества преобразуются в осадочные породы, в том числе залежи торфа, угля и других горючих ископаемых. Общая их масса во много раз больше массы живого вещества, а главное количество органического углерода заключено в виде небольших примесей гумусовых и углистых веществ, капель битумов и т.д. Главные превращения органические остатки претерпевают в почвах и илах в период энергичной работы микроорганизмов. В дальнейшем происходит более медленное их изменение под влиянием подземных вод и термокаталитическим путем при прогибании осадочных толщ и росте температуры или в результате радиолиза.
Геохимическое своеобразие биокосных систем определяется сочетанием биогенной, физико-химической и механической миграций. В биокосных системах литосферы происходит взаимодействие горных пород с природными водами в близких термодинамических условиях. Это определяет некоторые общие особенности физико-химической миграции, которая складывается из двух противоположных процессов: выветривания и цементации. Миграция элементов при выветривании, в свою очередь, складывается из противоположных процессов: выщелачивание из пород и минералов водных и присоединение воздушных элементов. Для цементации наиболее характерны аккумуляция водных мигрантов на геохимических барьерах, уменьшение пористости и увеличение объемной массы пород. Выветривание и цементация – разные стороны единого процесса миграции: первый порождает второй.
Техногенная миграция
С появлением человека и развитием человеческого общества появляется новый и самый сложный вид миграции химических элементов – техногенная миграция. Особенно быстро её роль возрастает последние два столетия (с начала промышленной революции). При этом многократно возрастает влияние техногенеза на природные процессы, техногенная нагрузка на природные системы, вплоть до биосферы в целом. Биосфера трансформируется и переходит в новое качество. В то же время люди до сих пор плохо знают законы, которым подчиняется техногенная миграция, механизмы влияния этих процессов на природные системы. Лишь в начале ХХ в. эти вопросы были поставлены В.И. Вернадским, и им же заложены концептуальные подходы к решению данного круга проблем. Но систематические исследования начались (и у нас, и за рубежом) только с 50-х годов ХХ в.
Концептуальная основа – идея перехода биосферы в качественно новое состояние: ноосферу (сферу разума). Подробнее этот вопрос мы рассмотрим, завершая этот курс.
Для характеристики техногенной миграции и связанного с нею распределения химических элементов на земной поверхности используются понятия:
Техногенные ореолы рассеяния.
В общем виде эти процессы сводятся к изъятию элементов из одних ландшафтно-геохимических систем, их переносу и поступлению в другие ландшафтно-геохимические системы, включая и накопление в последних. Для этих процессов, как и собственно в биосфере, используется, главным образом, преобразованная солнечная энергия, причём формы её использования более разнообразны. Широко используется в том числе и солнечная энергия, аккумулированная в прошлые геологические эпохи (горючие полезные ископаемые). Используются и эндогенные источники энергии, в том числе и энергия радиоактивного распада, использование которой в таких масштабах чуждо биосфере и возможные последствия её применения ясны ещё далеко не в полной мере.
Выделяется два геохимических типа процессов техногенной миграции.
Один из важнейших геохимических показателей техногенеза – технофильность химических элементов. Это отношение ежегодной добычи или производства элемента (в тоннах) к его кларку в литосфере. Таким образом, эта величина характеризует относительные масштабы извлечения элементы из природных сред в целях его промышленного использования человеком. При этом не учитываются параметры обратного выхода этих элементов из техногенного оборота, что делает показатель не вполне совершенным. То есть, в отличие от биофильности, этот показатель не является точным отражением концентрации элемента в продуктах техногенеза. (Ещё Вернадский отмечал, что абсолютная тенденция к концентрации на современном этапе ноосферогенеза характерна только для золота, остальные элементы в конечном счёте попадают в отходы производственной и бытовой деятельности и рассеиваются). Вторая особенность – динамичность показателя. В древности использовалось 18 элементов, в 18 веке – 28, к началу ХХ – около 70, а сейчас в техногенез вовлечены все известные элементы, плюс некоторые созданные искусственно элементы и изотопы. Развитие экономики и технологий приводит к постоянному изменению соотношения технофильности различных элементов. Сейчас наибольшая величина технофильности свойственна углероду, что характеризует интенсивность использования горючих полезных ископаемых. Высокие показатели – для фосфора, золота, свинца, цинка, меди… С другой стороны, низки величины технофильности для таких распространённых элементов, как магний, титан, и особенно – кремний. По существу это характеризует низкую степень использования этих элементов в техногенезе, что со временем, вероятно, изменится. Для кремния время этих изменений уже наступает в связи с началом внедрения керамики в качестве замены металлам и пластмассам (здесь лидирует Япония). В целом по мере развития науки и техники всё большей становится регулирующая роль кларка, так как богатые месторождения истощаются и со временем, видимо, человечество вынуждено будет перейти к извлечению элементов из пород, где их содержания ненамного отличаются от кларковых.
Установлено, что существуют циклы миграции: геохимические и биологические. Вопросы цикличности в техногенных процессах пока целенаправленно не изучались.
Круговороты химических элементов:
геохимический круговорот является составной частью геологического круговорота вещества – большой круговорот (рис. 1 ).
Биологический круговорот (БИК) связан с жизнедеятельностью организмов: питание и выделение, трофические цепочки, жизненный цикл) – малый круговорот (рис. 2) Далее, Вы узнаете, что БИК относительно замкнут лишь в пределах конкретных ландшафтов и биосферы в целом, но он не является полностью замкнутым, т.к. происходит перемещение вещества между ландшафтами, полное выведение части вещества из малого оборота в пределах географической оболочки как результат процессов осадконакопления – но сохранение его в большом круговороте;
Рис. 1 Схема геохимического (большого) круговорота
Рис. 2. Общая схема биологического круговорота (БИК)
В ноосфере происходит грандиозное перемещение атомов, их рассеяние и концентрация. Ей свойственны механическая, физико-химическая, биогенная миграция, но не они определяют ее своеобразие: главную роль играет техногенная миграция. Ноосфере характерно огромное ускорение миграции. Существует две группы процессов техногенеза. Первая группа процессов унаследована от биосферы, к ней относятся биологический круговорот, круговорот воды, рассеяние элементов при отработке месторождений, распыления вещества и многое другое. Техногенная миграция второй группы находится в резком противоречии с природными условиями.
Миграция газов
Аэрогенная (аэральная) миграция осуществляется в виде миграции газов, реже ионов и коллоидов в воздушной среде или между разными средами - например, между почвой и атмосферой, атмосферой и гидросферой
Газы составляют сотые доли % массы земной коры и десятые доли % – гидросферы, однако геохимическая роль газов не пропорциональна их массе: решающее значение имеет высокая подвижность газов, которые мигрируют интенсивнее, чем вещества в твердом и жидком состоянии. В земной коре выделяются газы воздушного, биохимического, химического и радиоактивного происхождения.
Миграция газов осуществляется путем фильтрации и диффузии. Основное значение имеет фильтрация, скорость которой определяется проницаемостью пород (трещиноватость, тектонические нарушения) и изменяется в сотни тысяч раз.
В оценке миграции газов необходимо рассмотрение такого важного показателя свойств газов как их растворимость. Большинство газов в стандартных условиях плохо растворяются в воде. С увеличением температуры растворимость большинства газов понижается, с увеличением давления – растет. Углеводороды лучше растворяются в нефти, чем в воде, миграция газов с нефтью имеет важное геохимическое значение: в местах повышения давления углеводороды растворяются в нефти, а в местах понижения – выделяется из нее. Однако в связи с большим масштабом водной миграции с подземными водами мигрирует значительно больше углеводородов, чем с нефтью.
Водная миграция
Вода – самая универсальная и самая важная среда миграции в земной коре. Водные растворы пронизывают верхнюю часть литосферы, вода – это «кровь» земной коры.
Природные воды часто взаимодействуют с различными горными породами, например крупные реки со сложным геологическим строением бассейна, многие подземные воды. Для вод с активной циркуляцией характерна интенсивность миграции, а для застойных вод – интенсивность накопления, т.к. представляет собой кларк концентрации элементов в минеральном остатке воды.
Электрохимические процессы возникают при любой миграции вод через горные породы, осадки, почвы. Системы, в которых протекают электрохимические процессы, именуются геоэлектрохимическими, а полюса поля, где концентрируются элементы – электрохимическими барьерами. В земной коре существуют локальные электрические поля – гальванические, фильтрационные, диффузионно-адсорбционные и др. Местами характерны крайне низкие концентрации элементов в растворах, исключающие их осаждение на геохимических барьерах: безбарьерная миграция, дальняя миграция. Но при электрохимических явлениях в растворах возможны и значительные концентрации элементов.
Электрохимические процессы являются одним из важнейших факторов выветривания минералов диэлектриков, причем катионы выносятся в определенной последовательности.
Заключение
Для каждого химического элемента свойственен свой преобладающий вид миграции, который определяется его физико-химическими свойствами. Для калия и фосфора ведущую роль играет биогенная миграция, для натрия и хлора - физико-химическая. Для титана, золота, платины, олова - механическая.
В каждом ландшафте может существовать несколько видов миграции, но доминирует один, высший вид. Например, в таежных и степных ландшафтах главный вид миграции - биогенная, хотя здесь протекают и физико-химические и механические процессы, геохимические черты городских ландшафтов определяются техногенной миграцией.
В зависимости от преобладающего вида миграции выделяют три основных ряда элементарных ландшафтов:
1. абиогенные ландшафты,
для которых характерна только
механическая и физико-
2. биогенные ландшафты с ведущим значением биогенной миграции.
3. антропогенные ландшафты,
своеобразие которых
Список литературы