Автор работы: Пользователь скрыл имя, 30 Сентября 2013 в 13:11, курсовая работа
Была выдвинута следующая гипотеза: мы предположили, что уровень развития представлений о форме предметов у старших дошкольников зависит от различных форм использования занимательного математического материала, а именно от применения задач-головоломок.
Для осуществления исследовательской работы нами были определены следующие методы:
- теоретический анализ психолого-педагогической и методической литературы,
- педагогическое наблюдение за деятельностью дошкольников,
- изучение продуктов деятельности дошкольников,
- проведение констатирующего, формирующего и контрольного экспериментов.
В дальнейшем закрепление
представлений детей о
Можно использовать следующие варианты упражнений на группировку четырехугольников:
- отобрать все красные четырехугольники, назвать фигуры данной группы;
-отобрать четырехугольники с равными сторонами, назвать их;
-отобрать все большие четырехугольники, назвать их форму, цвет;
-слева от
карточки положить все
Полезно применять и такой прием: детям раздаются карточки с контурным изображением фигур разного размера и формулируется задание подобрать соответствующие фигуры по форме и размеру и наложить их на контурное изображение. Равными фигурами будут те, у которых все точки совпадут по контуру.
Важной задачей является обучение детей сравнению формы предметов с геометрическими фигурами как эталонами предметной формы. У ребенка необходимо развивать умение видеть, какой геометрической фигуры или какому их сочетанию соответствует форма того или иного предмета. Это способствует более полному, целенаправленному распознаванию предметов окружающего мира и воспроизведению их в рисунке, лепке, аппликации. Хорошо усвоив геометрические фигуры, ребенок всегда успешно справляется с обследованием предметов, выделяя в каждом из них общую, основную форму и форму деталей.
Работа по
сопоставлению формы предметов
с геометрическими эталонами пр
На первом этапе нужно научить детей на основе непосредственного сопоставления предметов с геометрической фигурой давать словесное определение формы предметов.
Таким образом, удается отделить модели геометрических фигур от реальных предметов и придать им значение образцов. Для игр и упражнений подбираются предметы с четко выраженной основной формой без каких-либо деталей (блюдце, обруч, тарелка – круглые; платок, лист бумаги, коробка – квадратные и т.п.). На последующих занятиях могут быть использованы картинки, изображающие предметы определенной формы. Занятия следует проводить в форме дидактических игр или игровых упражнений: «Подбери по форме», «На что похоже?», «Найди предмет такой же формы», «Магазин» и т.п. Далее выбирают предметы указанной формы (из 4-5 штук), группируют их и обобщают по единому признаку формы (все круглые, все квадратные и т.д.). Постепенно детей учат более точному различению: круглые и шаровидные, похожие на квадрат и куб и т.п. Позднее им предлагают найти предметы указанной формы в групповой комнате. При этом дается лишь название формы предметов: «Посмотрите, есть ли на полке предметы, похожие на круг» и т.п. Хорошо провести игры «Путешествие по групповой комнате», «Найдите, что спрятано».
При сопоставлении
предметов с геометрическими
фигурами нужно использовать приемы
осязательно-двигательного
На втором этапе детей учат определять не только основную форму предметов, но и форму деталей (домик, машина, снеговик, петрушка и т.д.). Игровые упражнения проводят с целью обучения детей зрительно расчленять предметы на части определенной формы и воссоздавать предмет из частей. Такие упражнения с разрезными картинками, кубиками, мозаикой лучше проводить вне занятия.
Упражнения на распознавание геометрических фигур, а также на определение формы разных предметов можно проводить вне занятий, как небольшими группами, так и индивидуально, используя игры «Домино», «Геометрическое лото» и др.
Следующая задача - научить детей составлять плоские геометрические фигуры путем преобразования разных фигур. Например, из двух треугольников сложить квадрат, а из других треугольников – прямоугольник. Затем из двух-трех квадратов, сгибая их разными способами, получать новые фигуры (треугольники, прямоугольники, маленькие квадраты).
Эти задания
целесообразно связывать с
Можно и дальше усложнять задание. Разделив по-разному на две и четыре части квадрат и прямоугольник, например квадрат – на два прямоугольника и два треугольника или на четыре прямоугольника и четыре треугольника (по диагонали), а прямоугольник – на два прямоугольника и два треугольника или на четыре прямоугольника, а из них два маленьких прямоугольника – на четыре треугольника. Количество частей увеличивается, и это усложняет задание.
Очень важно
упражнять детей в
Вариантами конструктивных заданий будет построение фигур из палочек и преобразование одной фигуры в другую путем удаления нескольких палочек:
-сложить два квадрата из семи палочек;
-сложить три треугольника из семи палочек;
-сложить прямоугольник из шести палочек;
-из пяти палочек
сложить два разных
-из девяти палочек составить четыре равных треугольника;
-из десяти палочек составить три равных квадрата;
-можно ли из одной палочки на столе построить треугольник?
-можно ли из двух палочек построить на столе квадрат?
Эти упражнения способствуют развитию сообразительности, памяти, мышления детей.
Знания о геометрических фигурах и форме предметов в подготовительной группе расширяются, углубляются и систематизируются.
Одна из задач подготовительной к школе группы - познакомить детей с многоугольником, его признаками: вершины, стороны, углы. Решение этой задачи позволит подвести детей к обобщению: все фигуры, имеющие по три и более угла, вершины, стороны, относятся к группе многоугольников.
Детям показывают модель круга и новую фигуру – пятиугольник. Предлагают сравнить их и выяснить, чем отличаются эти фигуры. Фигура справа отличается от круга тем, что имеет углы, много углов. Детям предлагается прокатить круг и попытаться прокатить многоугольник. Он не катится по столу. Этому мешают углы. Считают углы, стороны, вершины и устанавливают, почему эта фигура называется многоугольником. Затем демонстрируется плакат, на котором изображены различные многоугольники. У отдельных фигур определяются характерные для них признаки. У всех фигур много сторон, вершин, углов. Как можно назвать все эти фигуры, одним словом? И если дети не догадываются, воспитатель помогает им.
Для уточнения знаний о многоугольнике могут быть даны задания по зарисовке фигур на бумаге в клетку. Затем можно показать разные способы преобразования фигур: обрезать или отогнуть углы у квадрата и получится восьмиугольник. Накладывая два квадрата друг на друга, можно получить восьмиконечную звезду.
Упражнения детей с геометрическими фигурами, как и в предыдущей группе, состоят в опознавании их по цвету, размерам в – разном пространственном положении. Дети считают вершины, углы и стороны, упорядочивают фигуры по их размерам, группируют по форме, цвету и размеру. Они должны не только различать, но и изображать эти фигуры, зная их свойства и особенности. Например, воспитатель предлагает детям нарисовать на бумаге в клетку два квадрата: у одного квадрата длина сторон должна быть равна четырем клеткам, а у другого – на две клетки больше.
После зарисовки этих фигур детям предлагается разделить квадраты пополам, причем в одном квадрате соединить отрезком две противолежащие стороны, а в другом квадрате соединить две противолежащие вершины; рассказать, на сколько частей разделили квадрат и какие фигуры получились, назвать каждую из них. В таком задании одновременно сочетаются счет и измерение условными мерками (длиной стороны клеточки), воспроизводятся фигуры разных размеров на основе знания их свойств, опознаются и называются фигуры после деления квадрата на части (целое и части).
Согласно программе в подготовительной группе следует продолжать учить детей преобразованию фигур.
Эта работа способствует
-познанию фигур и их признаков
-развивает конструктивное и геометрическое мышление.
Приемы этой работы многообразны:
-одни из них направлены
на знакомство с новыми
-другие – на создание
новых фигур при их
Детям предлагают сложить квадрат пополам двумя способами: совмещая противолежащие стороны или противолежащие углы – и сказать, какие фигуры получились после сгибаний (два прямоугольника или два треугольника).
Можно предложить узнать, какие получились фигуры, когда прямоугольник разделили на части, и сколько теперь всего фигур (один прямоугольник, а в нем три треугольника). Особый интерес для детей представляют занимательные упражнения на преобразование фигур.
Таким образом, для развития у ребенка представлений формы надо освоить ряд практических действий, которые помогают ему воспринимать форму независимо от положения фигуры в пространстве, от цвета и величины. Это такие практические действия, как: наложение фигур, прикладывание, переворачивание, сопоставление элементов фигур, обведение пальцем контура, ощупывание, рисование.
После освоения практических действий ребенок может узнать любую фигуру, выполняя эти же действия в уме. За весь дошкольный период ребенок осваивает шесть основных форм: треугольник, круг, овал, квадрат, прямоугольник и трапеция. Можно обследовать предмет более подробно, не только общую форму, но и ее отличительные детали (углы, длину сторон), наклон фигуры.
В истории развития дошкольной дидактики и методики формирования математических представлений место и роль занимательного материала рассматривались с разных позиций. В начале нашего столетия, когда не было специальных работ, направленных на раскрытие вопросов методики обучения дошкольников математике, простейший занимательный материал включался в общие сборники по занимательной математике. Указывалось на возможность использования его с целью подготовки детей к обучению в школе, развития смекалки. В задачах разной степени сложности занимательность привлекает внимание детей, активизирует мысль, вызывает устойчивый интерес к предстоящему поиску решения. Характером материала определяется его назначение: развивать у детей общие умственные и математические способности, заинтересовывать их предметом математики, развлекать, что не является, безусловно, основным.
Любая математическая задача на смекалку, для какого бы возраста она ни предназначалась, несет в себе определенную умственную нагрузку, которая чаще всего замаскирована занимательным сюжетом, внешними данными, условием задачи и т. д.
Умственная задача: составить фигуру, видоизменить, найти путь решения, отгадать число - реализуется средствами игры, в игровых действиях. Развитие смекалки, находчивости, инициативы осуществляется в активной умственной деятельности, основанной на непосредственном интересе.
Занимательность математическому материалу придают игровые элементы, содержащиеся в каждой задаче, логическом упражнении, развлечении, будь то шахматы или самая элементарная головоломка. Например, в вопросе: "Как с помощью двух палочек сложить на столе квадрат?" - необычность его постановки заставляет ребенка задуматься в поисках ответа, втянуться в игру воображения.
Из всего многообразия головоломок наиболее приемлемы в старшем дошкольном возрасте(5-7 лет) головоломки с палочками (можно использовать спички без серы). Их называют задачами на смекалку геометрического характера, так как в ходе решения, как правило, идет трансфигурация, преобразование одних фигур в другие, а не только изменение их количества. В дошкольном возрасте используются самые простые головоломки. Для организации работы с детьми необходимо иметь наборы обычных счетных палочек для составления из них наглядно представленных задач-головоломок. Кроме этого, потребуются таблицы с графически изображенными на них фигурами, которые подлежат преобразованию. На обратной стороне таблиц указывается, какое преобразование надо проделать и какая фигура должна получиться в результате.
Задачи на смекалку различны по степени сложности, характеру преобразования (трансфигурации). Их нельзя решать каким-либо усвоенным ранее способом. В ходе решения каждой новой задачи ребенок включается в активный поиск пути решения, стремясь при этом к конечной цели, требуемому видоизменению или построению пространственной фигуры.
Для детей 5-7 лет
задачи-головоломки можно объед