Автор работы: Пользователь скрыл имя, 10 Июля 2013 в 15:47, реферат
Фундаментом математической экологии является математическая теория динамики популяций , в которой фундаментальные биологические представления о динамике численности видов животных, растений, микроорганизмов и их взаимодействии формализованы в виде математических структур, в первую очередь, систем дифференциальных, интегро-дифференциальных и разностных уравнений.
Математические модели находят широкое практическое применение для решения проблем природопользования и охраны окружающей среды. Также стоит отметить, что в настоящее время исследования по охране окружающей среды ведутся во всех областях науки и техники различными организациями и на различных уровнях, в том числе и государственном.
Целью данной работы является знакомство с некоторыми методами математического моделирования.
Введение 3
1 Математическое моделирование в экологии
Общесистемный подход к моделированию экологических систем 4
Классы задач и математический аппарат 6
Гипотезы Вольтерра о типах взаимодействий в экосистемах 8
Принципы лимитирования в экологии 9
Закон толерантности и функция отклика 12
2 Модели экосистем
2.1 Модели водных экосистем 15
2.2 Модели продукционного процесса растений 17
2.3 Модели лесных сообществ 20
2.4 Оценка загрязнения атмосферы и поверхности Земли 22
2.5 Глобальные модели 23
Заключение 27
Список литературы 28
Рис.2
толерантности. Тогда под лимитирующим фактором понимается тот, который приближается или выходит за пределы толерантности.
В современной экологической литературе (Одум, 1975, 1986; Федоров, Гельманов, 1980; Левич и др., 1997) закон толерантности рассматривается как продолжение и расширение принципа Либиха. Лимитирующим при этом называют фактор, по которому для достижения заданного относительного изменения функции отклика необходимо минимальное относительное изменение значения фактора. Такое определение требует подробного изучения зависимости функций отклика от всей совокупности экологических факторов в каждом конкретном случае, что связано с использованием приемов многофакторного эксперимента и аппарата многомерной математической статистики. Практическое использование такого подхода к исследованию большинства природных экосистем затруднено из-за недостатка экспериментальных данных и отсутствия систематических наблюдений.
Применение метода функций отклика для описания сложных экологических систем подразумевает решение задачи идентификации нелинейных систем достаточно большой размерности, и стало возможным лишь в последние десятилетия 20 века в связи с появлением принципиально новых возможностей обработки временных рядов, новых пакетов решения систем дифференциальных уравнений, новых оптимизационных пакетов для проведения процедуры идентификации параметров, новых информационных технологий. Важным вопросом моделирования систем на основе метода функций отклика является анализ и обработка экспериментальных данных и использование робастных процедур, приводящих к тому, что результаты обработки мало зависят от наличия данных с большими ошибками
Сложность экологических
систем приводит к тому, что функциональную
связь между компонентами системы
трудно описать традиционными
Математическое определение
функции отклика следующее.
Частной функцией отклика показателя или процесса называют функцию зависимости значений этого показателя от одного экологического фактора, то есть функцию одной переменной fj(xj). Примеры частных функций отклика скорости роста растения на изменение внешних факторов приведены на рис. 2. Обобщенной функцией Fk называется функция зависимости значений k -го показателя или процесса от всех рассматриваемых экологических факторов, представленная как комбинация частных функций отклика.. В зависимости от постановки задачи в качестве обобщенной функции отклика может выступать суммарная биомасса экосистемы или отдельного вида, урожай или такие обобщенные характеристики как функция (индекс) благополучия системы, функция резистентности, функция модификации и другие.
Наиболее часто используемые на практике частные функции отклика:
и их модификации. Здесь a, b, c, xmax, - параметры, подлежащие модификации.
Формирование обобщенной
функции отклика представляет собой
наиболее сложную задачу. Обычно используют
мультипликативное
где - частные функции отклика, aj - вектор параметров, подлежащих идентификации, n - количество рассматриваемых факторов.
Задача идентификации
обобщенной функции отклика является
задачей нелинейной регрессии с
достаточно большим количеством
параметров идентификации. Задача не может
быть упрощена путем снижения ее размерности
за счет выделения отдельных частных
функций отклика или путем
линейной аппроксимации, так как
эти процедуры неправомерны в
силу сложности системы и
В отличие от классических
моделей популяционной динамики
и гидродинамики параметры
Аппарат функций отклика
успешно применялись для
2 Модели экосистем
2.1 Модели водных экосистем
Модели водных экосистем занимают большое место в математической экологии, в первую очередь потому, что водная среда гораздо более гомогенная, чем суша, ее легче изучать и моделировать. Значительная доля гидробионтов, в первую очередь фитопланктон, являются микроорганизмами, к ним применимы многие методы математического моделирования, разработанные и экспериментально проверенные на микробных популяциях.
Водные системы дают людям, животным,
сельскому хозяйству и
В 70-80 годы особенно активно развивались модели озерных экосистем. (Jorgensen S.E. Lake management. Oxford, 1980). Одной из важнейших задач была выработка борьбы с эфтрификацией - "цветением" озер в связи с увеличением количества поступающего в них органического вещества, а также биогенных веществ, в первую очередь азота, вместе со стоками вод из сельскохозяйственных угодий. Озеро представляет собой относительно замкнутую экосистему, поэтому моделирование потоков вещества и энергии в ней обычно проводится путем выделения нескольких круговоротов, обладающих различными характерными временами. Это быстрый первичный кругооборот (фито- и бактерио- планктон, легко окисляющиеся органические вещества и минеральный субстрат); вторичный круговорот - бактерии, мирный зоопланктон (фильтраторы) и некоторые виды хищного зоопланктона, высшие трофические уровни - консументы. Наконец, медленный круговорот представляют относительно консервативные компоненты: трудноокисляемое органическое вещество (водный гумус), донные отложения, популяции долгоживущих гидробионтов.
Учет иерархии времен отдельных круговоротов позволяет представить озерную экосистему в виде своеобразной "матрешки" - вложенных друг в друга процессов. При этом определяющим является первичный круговорот, систему которого на малых временах можно считать замкнутой. Более медленные процессы можно рассматривать как его возмущения.
Математические модели помогают разработать
оптимальную стратегию
Решение задачи оптимизации систематического лова рыбы восходит к работам Баранова (1918). Представив коэффициенты общей смертности в виде суммы коэффициентов естественной и промысловой гибели в формуле численности рыбного стада, Баранов оценил величину улова и смог подойти к постановке задачи оптимального вылова. Значительный шаг в решении этой проблемы сделали Риккер (1958) и Бивертон и Холт (1957), связавшие модели с конкретным статистическим материалом рыбоводства и ихтиологии и предложившие методики решения задач управления.
Особенно большой вклад в моделирование рыбных популяций внес В.В.Меншуткин, ("Математическое моделирование популяций и сообществ водных животных", Л.,1971), который представил схему взаимодействий в водной экосистеме как контур с обратными связями. Такая система может обладать устойчивым стационарным состоянием, в ней могут возникать колебательные или квазистохастические режимы. Подобные схемы, часто весьма детальные, были положены в основу моделей рыбного стада многих озер и морей.
Научную базу описания обменных процессов водных экосистем дали работы основоположника математической экологии Алексея Андреевича Ляпунова, крупнейшего русского ученого, стоящего у истоков также и других областей математического моделирования, в том числе математической лингвистики. В работах Ляпунова впервые в одной модели были объединены физические (гидродинамические) и биологические (хищничество) процессы. А.А.Ляпунов подчеркивал важность для экосистем как физической (поглощение энергии света), так и биологической (образование биомассы) роли фотосинтеза.
В настоящее время аналогичные модели потоков вещества и энергии используются для анализа процессов океанизации и эвтрофикации окраинных морей и описания распределения планктона в различных районах мирового океана. Последние десятилетия для океанологов и лимнологов стали доступными результаты дистанционного зондирования вод океанов и морей в видимой части спектра. Такие наблюдения дают возможность оценить концентрацию хлорофилла в поверхностном слое и на основе статистических методов оценить пространственную концентрацию фитопланктона. Так среднемесячные поля концентрации хлорофилла рассчитаны для периода 1978-1984 гг. (Esaias et.al. 1986 и более поздние работы) на основе измерений, проведенных сканером CZCS, установленным на борту спутника "Нимбус-7" (США). Использование этих данных позволило провести статистический анализ сезонного цикла первичной продукции для северной части Атлантического океана и оценить величины глобальной фотосинтетической первичной продукции.
Оптическая активность пигментов, содержащихся в клетках фитопланктона во многом формирует свойства гидрооптических полей. Это явление служит основой разработки оптических методов исследований распределения и свойств полей фитопланктона с помощью дистанционного зондирования с борта судна, самолетов или спутниковых платформ.
Совокупность методов
Экодинамические модели, аккумулирующие данные, полученные с помощью дистанционных методов наблюдений, обычно содержат подмодели: а) популяционной динамики, включающая в себя алгоритм для вычисления фотосинтетической первичной продукции; б) физическую (гидродинамическую модель переноса и диффузии и в) модель формирования подводного оптического поля. Для решения гидродинамической задачи в идеале строится специальная трехмерная гидродинамическая модель течений и горизонтального и вертикального перемешивания. Для моделирования динамики органического вещества, в частности, численности фитопланктона, важным является учет конкуренции и хищничества.
2.2 Модели продукционного процесса растений
Одной из наиболее продвинутых
областей в математической экологии
является моделирование продукционного
процесса растений. Это определяется
практической значимостью таких
моделей для оптимизации
Если же моделируется посев
в открытом грунте, на который оказывают
влияние непредсказуемые
Всю систему происходящих
в агробиоценозе процессов