Автор работы: Пользователь скрыл имя, 31 Октября 2013 в 18:25, курс лекций
Лекция 1. Введение в информатику
1.1. Что такое инфоpматика?
Термин "информатика" (франц. informatique) происходит от французских слов information (информация) и automatique (автоматика) и дословно означает "информационная автоматика".
Широко распространён также англоязычный вариант этого термина — "Сomputer science", что означает буквально "компьютерная наука".
Инфоpматика — это основанная на использовании компьютерной техники дисциплина, изучающая структуру и общие свойства информации, а также закономерности и методы её создания, хранения, поиска, преобразования, передачи и применения в различных сферах человеческой деятельности.
7.1. Запишите по правилам алгоритмического языка выражения:
a) |
e) |
||
б) |
ж) |
||
в) |
з) |
||
г) |
и) |
||
д) |
к) |
[ Ответ ]
7.2. Запишите в обычной математической форме арифметические выражения:
а) a/b**2; |
л) 5*arctg(x)-arctg(y)/4; |
[ Ответ ]
7.3. Вычислите значения арифметических
выражений при x=1:
а) abs(x-3)/ln(exp(3))*2/lg(
Решение: abs(1-3)=2; ln(exp(3))=3; lg(10000)=4; 2/3*2/4=0.33;
б) sign(sqrt(sqrt(x+15)))*2**2**
в) int(-2.1)*int(-2.9)/int(2.9)+
г) -sqrt(x+3)**2**(sign(x+0.5)*3)
д) lg(x)+cos(x**2-1)*sqrt(x+8)-
е) sign(x-2)*sqrt(int(4.3))/abs(
ж) div(10,x+2)*mod(10,x+6)/max(
[ Ответ ]
7.4. Запишите арифметические выражения,
значениями которых являются:
а) площадь треугольника со сторонами a, b, c (a, b, c>0) и полупериметром p;
Ответ: sqrt(p*(p-a)*(p-b)*(p-c));
б) среднее арифметическое и среднее геометрическое
чисел a, b, c, d;
в) расстояние от точки с координатами (x,y) до точки (0,0);
г) синус от x градусов;
д) площадь поверхности куба (длина ребра
равна а);
е) радиус описанной сферы куба (длина
ребра равна а);
ж) координаты точки пересечения двух
прямых, заданных уравнениями
a1x+b1y+c1=0
и a2x+b2y+c2=0
(прямые не параллельны).
[ Ответ ]
7.5. Вычислите значения логических выражений:
а) x*x+y*y<=9 при x=1, y=-2
Ответ: да;
б) b*b-4*a*c<0 при a=2, b=1, c=-2;
в) (a>=1) и (a<=2) при a=1.5;
г) (a<1) или (a>1.2) при a=1.5;
д) (mod(a,7)=1) и (div(a,7)=1) при a=8;
е) не ((a>b) и (a<9) или (а*а=4))
при a=5, b=4.
[ Ответ ]
7.6. Запишите логические выражения, истинные
только при выполнении указанных условий:
а) x принадлежит отрезку
[a, b]
Ответ: (x>=a) и (x<=b);
б) x лежит вне отрезка [a, b];
в) x принадлежит отрезку
[a, b] или отрезку [c, d];
г) x лежит вне отрезков [a, b] и [c, d];
д) целое k является нечетным числом;
е) целое k является трехзначным
числом, кратным пяти;
ж) элемент ai,j двумерного массива
находится на пересечении нечетной строки
и четного столбца;
з) прямые a1x+b1y+c1=0
и a2x+b2y+c2=0
параллельны;
и) из чисел a, b, c меньшим является с, а большим b;
к) среди чисел a, b, c, d есть взаимно противоположные;
л) среди целых чисел a, b, c есть хотя бы два четных;
м) из отрезков с длинами a, b, c можно построить треугольник;
н) треугольники со сторонами a1, b1, c1
и a2, b2, c2
подобны;
о) точка с координатами (x,y) принадлежит внутренней
области треугольника с вершинами A(0,5), B(5,0) и C(1,0);
п) точка с координатами (x,y) принадлежит области,
внешней по отношению к треугольнику с
вершинами A(0,5), B(1,0) и C(5,0);
р) четырехугольник со сторонами a, b, c и d является ромбом.
[ Ответ ]
7.7. Начертите на плоскости (x,y) область, в которой
и только в которой истинно указанное
выражение. Границу, не принадлежащую
этой области, изобразите пунктиром.
а) (x<=0) и (y>=0) |
е) ((x-2)**2+y*y<=4) и (y>x/2) |
б) (x>=0) или (y<=0) |
ж) (x*x+y*y<1) и (y>x*x); |
[ Ответ ]
7.8. Запишите логическое выражение, которое принимает значение "истина" тогда и только тогда, когда точка с координатами (x, y) принадлежит заштрихованной области.
[ Ответ ]
7.9. Пусть a=3, b=5, c=7. Какие значения будут
иметь эти переменные в результате выполнения
последовательности операторов:
а) a:=a+1; b:=a+b; c:=a+b; a:=sqrt(a)
Решение: a=3+1=4, b=4+5=9, c=4+9=13, a= {корень из}4 =2.
Ответ: а=2, b=9, c=13;
б) с:=a*b+2; b:=b+1; a:=c-b**2; b:=b*a;
в) b:=b+a; c:=c+b; b:=1/b*c;
г) p:=c; c:=b; b:=a; a:=p; c:=a*b*c*p;
д) c:=a**(b-3); b:=b-3; a:=(c+1)/2*b; c:=(a+b)*a;
е) x:=a; a:=b; b:=c; c:=x; a:=sqrt(a+b+c+x-2);
ж) b:=(a+c)**2; a:=lg(b**2)**2; c:=c*a*b.
[ Ответ ]
7.10. Задайте с помощью операторов присваивания
следующие действия:
а) массив X=(x1, x2) преобразовать
по правилу: в качестве x1 взять сумму, а
в качестве х2 — произведение исходных
компонент;
Решение: c:=x[1]; x[1]:=x[1]+x[2]; x[2]:=c*x[2]
б) поменять местами значения элементов
массива X=(x1, x2);
в) в массиве A(N) компоненту с номером i (1<i<N) заменить полусуммой
исходных соседних с нею компонент, соседнюю
справа компоненту заменить на нуль, а
соседнюю слева компоненту увеличить
на 0.5;
г) u=max(x,y,z)+min(x-z,y+z,y,z);
[ Ответ ]
7.11. Задайте с помощью команд если или выбор вычисления по формулам:
a) |
||
б) |
||
в) |
| |
г) |
||
д) |
||
е) |
||
ж) |
если точка лежит
внутри круга радиусом r (r>0) с центром
в точке (a,b) |
[ Ответ ]
7.12. Постройте графики функций y(x), заданных командами если:
а) если x<=-1 то y:=1/x**2 иначе если x<=2 то y:=x*x иначе y:=4 все все |
в) если x<-0.5 то y:=1/abs(x) иначе если x<1 то y:=2 иначе y:=1/(x-0.5) все все |
Решение |
г) если x<0 то y:=1 иначе если x<3.14 то y:=cos(x) иначе y:=-1 все все |
б) если x<-5 то y:=-5 иначе если x<0 то y:=x иначе если x<3 то y:=2*x иначе y:=6 все все все |
д) если abs(x)>2 то y:=x*x иначе если x<0 то y:=-2*x иначе если x>=1 то y:=4 иначе y:=4*x*x все все все |
[ Ответ ]
7.13. Определите значение целочисленной переменной S после выполнения операторов:
а) S:=128 нц для i от 1 до 4 S:=div(S,2) кц |
Решение
Ответ: S=8 |
г) S:=0 нц для i от 1 до 2 нц для j от 2 до 3 S:=S+i+j кц кц |
Решение
Ответ: S=16 | ||||||||||||||||||||||||||||||
б) S:=1; a:=1 нц для i от 1 до 3 S:=S+i*(i+1)*a a:=a+2 кц |
д) нц для i от 1 до 3 S:=0 нц для j от 2 до 3 S:=S+i+j кц | ||||||||||||||||||||||||||||||||
в) S:=1; a:=1 нц для i от 1 до 3 S:=S+i нц для j oт 2 до 3 S:=S+j кц кц |
е) нц для i от 1 до 2 S:=0 нц для j oт 2 до 3 нц для k oт 1 до 2 S:=S+i+j+k кц кц кц |
[ Ответ ]
7.14. Определите значение переменной S после выполнения операторов:
а) i:=0; S:=0 нц пока i<3 i:=i+1; S:=S+i*i кц |
г) S:=0; N:=125 нц пока N>0 S:=S+mod(N,10) | S — сумма цифр N:=div(N,10) | числа N кц | ||||||||||||||||||||||||||||||||||||
Решение
Ответ: S=14 |
Решение
Ответ: S=8 | ||||||||||||||||||||||||||||||||||||
б) S:=0; i:=1 нц пока i>1 S:=S+1/i i:=i-1 |
д) а:=1; b:=1; S:=0; нц пока a<=5 a:=a+b; b:=b+a; S:=S+a+b кц | ||||||||||||||||||||||||||||||||||||
в) S:=0; i:=1; j:=5 нц пока i<j S:=S+i*j i:=i+1 j:=j-1 кц |
е) a:=1; b:=1 нц пока a+b<10 a:=a+1 b:=b+a кц |
[ Ответ ]
7.15. Составте алгоритмы решения задач линейной структуры (условия этих задач заимствены из учебного пособия В.М. Заварыкина, В.Г. Житомирского и М.П. Лапчика "Основы информатики и вычислительной техники", 1989):
а) в треугольнике известны три стороны a, b и c; найти (в градусах) углы этого треугольника, используя формулы:
С=180o-(А+В). |
Пояснение. Обратите внимание на то, что стандартные
тригонометрические функции arccos и arcsin возвращают вычисленное
значение в радианной мере.
Решение:
алг Углы треугольника(арг вещ a,b,c, рез вещ UgolA,UgolB,UgolC)
нач вещ RadGr,UgolARad
| RadGr — коэф. перевода угла из радианной меры в градусную
| UgolARad — угол A (в радианах)
RadGr:=180/3.14
UgolARad:=ArcCos((b*b+c*c-a*a)
UgolA:=UgolARad*RadGr
UgolB:=ArcSin(b*sin(UgolARad)/
UgolC:=180-(UgolA+UgolB)
кон
б) в треугольнике известны две стороны a, b и угол C (в радианах) между ними; найти сторону c, углы A и B (в радианнах) и площадь треугольника, используя формулы:
с2 = a2 + b2 - 2ab cos C.
Пояснение. Сначала нужно найти сторону c, а затем остальные требуемые значения;
в) в треугольнике известны три стороны a, b и c; найти радиус описанной окружности и угол A (в градусах), используя формулы:
где
г) в правильной треугольной пирамиде известны сторона основания a и угол A (в градусах) наклона боковой грани к плоскости основания; найти объем и площадь полной поверхности пирамиды, используя формулы:
V=Socн· H/2; |
||
где |
д) в усеченном конусе известны радиус оснований R и r и угол A (в радианах) наклона образующей к поверхности большого основания; найти объем и площадь боковой поверхности конуса, используя формулы:
где |
e) в правильной четырехугольной пирамиде сторона основания равна a, а боковое ребро наклонено к плоскости основания под углом A; найти объем и площадь полной поверхности пирамиды и площадь сечения, проходящего через вершину пирамиды и диагональ основания d; использовать формулы:
[ Ответ ]
7.16. Составте алгоритм решения задач развлетвляющейся структуры:
а) определить, является ли треугольник
с заданными сторонами a, b, c равнобедренным;
Решение:
алг Треугольник(арг вещ a,b,c, рез лог Otvet)
дано | a>0, b>0, c>0, a+b>c, a+c>b, b+c>a
надо | Otvet = да, если треугольник равнобедренный
| Otvet = нет, если треугольник не равноведренный
нач
если (a=b) или (a=c) или (b=c)
то Otvet:= да
иначе Otvet:= нет
все
кон
б) определить количество положительных чисел среди заданных чисел a, b и c;
в) меньшее из двух заданных неравных чисел увеличить вдвое, а большее оставить без изменения;
г) числа a и b — катеты одного прямоугольного треугольника, а c и d — другого; определить, являются ли эти треугольники подобными;
д) данны три точки на плоскости; определить, какая из них ближе к началу координат;
е) определить, принадлежит ли заданная точка (x,y) плоской фигуре, являющейся кольцом с центром в начале координат, с внутренним радиусом r1 и внешним радиусом r2;
ж) упорядочить по возрастанию последовательность
трех чисел a, b и c.
[ Ответ ]